

85

Journal of Advances in Computer Research
Quarterly pISSN: 2345-606x eISSN: 2345-6078
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 5, No. 3, August 2014), Pages: 85-100
www.jacr.iausari.ac.ir

An Analytical algorithm of component-Based
Heterogeneous Software Architectural Styles

performance prediction

Golnaz Aghaee Ghazvini 1, Sima Emadi2*
 (1) Department of computer, dolatabad Branch, Islamic Azad University, Isfahan, Iran

(2) Department of Computer, College of Engineering, Yazd Science and Research Branch, Islamic Azad
University, Yazd, Iran

aghaee.golnaz@sco.iaun.ac.ir; emadi@maybodiau.ac.ir

Received: 2013/11/19; Accepted: 2014/02/19

Abstract
With regard to the society’s need for complicated software and high level of

expenses on its development, it is necessary to take all stakeholders’ requirements
and the demands into consideration, before any investments and put on the design
and utilization stages. Software architecture is a technical description of a software
system that indicates components and their relationships between them. In fact
architecture style is a set of principles used by a software architect to design
software architecture. Nowadays, this is a common behavior among the software
architects in designing any software. As “Performance” is the most important
qualitative features chosen for the assessment, the main objective of this research is
studying the effect of various styles on its non-functional requirements, using
Markov model, so that the architect can choose a suitable style based on qualitative
and precise criteria. In this paper with regards to the results obtained based on
homogeneous style, an algorithm has been presented to generalize the assessment
method for the heterogeneous styles. Finally, to represent the correctness of the
proposed algorithm, an illustrative example has been presented.

Keywords: Software architecture; Markov model; Architectural styles; Performance attribute;

homogeneous styles; Heterogeneous styles

1. Introduction

Software architecture consisting of components, connectors and configurations,
represents the structure of software system. The architecture of a software system has
been identified as an important aspect in software development; as it provides a formal
basis to describe and analyze the software systems. Performance is one of the most
important quality attributes in software architecture. Software architects take advantage
of early performance analysis and measurement approaches for a software system based
on components, so that evaluate their systems on the basis of performance specifications
which are created by component developers [1]. Over last decades, there have been
many approaches for evaluating the performance attributes of component-based
systems. These approaches have been classified into formal and informal models.
Classical formal models such as queuing networks [2], stochastic process algebras [3],
and stochastic Petri nets [4], coloured petri net [5] and automata [6] can be used to

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

86

model and analyze the component-based software systems. In our previous works, we
proposed a new algorithm for performance evaluation of homogeneous software
architecture based on various styles [7, 8]. Ramamurthy et al. have represented an
analytical model for component based heterogeneous software architecture reliability.
This algorithm is based on Markov Chain properties in order to compute the reliability
on heterogeneous software architecture consisting of various styles [9]. Borsch et al.
have introduced a reliability modeling and prediction technique that considers the
relevant architectural factors of software systems and explicitly models the component
usage profile and execution environment. This work has built upon the Palladio
component model [10]. However, these approaches do not specifically consider
performance evaluation of architectural styles using Markov chain. A combination of
architectural styles restricting the features/roles of architectural components and
allowing relationships among these components within any architecture conforming to
that style is referred to as architectural style [11, 12]. Architects use software
architectural styles in designing software architecture. Common styles are Batch-
sequential, Pipe and Filters, Call and Return and also Fault tolerance [13]. In a batch-
sequential style, components are executed in a sequential manner. This means that only
a single component is executed in any instance of time. For example, a bank performs a
batch of transactions update to a master file in sequence. A parallel style has a set of
components running concurrently; a fault tolerant style has a set of back-up components
compensating for the failure of the others; call and return style has some components,
calling the other components at an indefinite number of times [2, 13, 14]. In this paper,
a new algorithm for performance evaluation of architectural styles is presented. The
algorithm is called extended “PEAS” [7] (Performance Evaluation of Architectural
Styles). It consists of software architecture modeling as a Discrete Time Markov Chain
(DTMC), and the DTMC model is then analyzed to get performance attributes of the
systems. The unique ability of the approach allows quantitative analysis for
performance attribute, so it will make algorithm suitable for comparing various software
architecture and component type. This algorithm is useful for both analyses at the time
of system design as well as for the evaluation of existing systems. The rest of the paper
is divided as follows: section 2 introduces an analytical algorithm to performance
evaluation of heterogeneous architectural styles. Section 3 illustrates an Example of
component-based system for performance evaluation of the system. Conclusion and
future works are presented in section4.

2. An algorithm for performance evaluation of architectural styles

In this section, the ‘response time’ parameter which is one of the most important
performance parameters has been chosen. The following algorithm is offered for
quantitative evaluation of this parameter in heterogeneous architectural styles.
Quantitative evaluations of ‘service time’ parameter in homogeneous architectural
styles have been done in previous work [7, 8]. The architectural styles can be used for
evaluation of performance through the following steps:
Step1: Defining the architecture with state diagram.
Step 2: Identifying basic styles in heterogeneous architecture based on system design
features.
Step 3: Mapping the state diagram to Markov model.
Step 4: Integrating Markov models to create an overall Markov model.

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

87

Step5: Creating the separate sets for each style and enforcing limitations.
Step 6: Creating the transition probability matrix.
Step 7: Calculating the visit number of each state in Markov model.
Step 8: Evaluating the efficiency of the model.
These steps will be described in details:

Step1: Defining the architecture with state diagram: The dynamic behavior of the system
is defined by using the state diagram. Supposing that the system has a limited number of
components, transfer of current control between different components is defined by the
state diagram. The diagram for the state used for this purpose is the UML state diagram.
Step 2: Identifying basic styles in heterogeneous architecture based on system design
features: The styles existing in software architecture can be identified with regard to
design features and the abstract software system, which describes the interactions and
relationships between components. For instance, interactions between components can
include a request for service made by one component to another (the call and return
style) or the cooperation of several components to improve the system fault tolerance
(fault tolerance style). In contrast, architectural styles may have commonalities in
heterogeneous architecture. That is, a component or components may belong to several
different styles; of course, in situations where they do not put any harm to the
performance trend accuracy. For example, a component of the parallel style cannot be
concurrently considered as a support component for another component because it
disturbs the accuracy of the performance logic [13]. In this stage, there are separate sets,
with the same number to the basic identified styles in architecture, each of which
belongs to one basic style, and comprises the components of the same style. If
architecture G has x components, and each architectural component is shown with Ca,
the following sets are defined to separate the components of each style from another.
The definitions of these sets have been summarized in figure1. Set B is created for the
components of the Batch-sequential style. In this set, the components belonging to the
Batch-sequential style (Ca.e Batch-sequential style) are placed. The number of members
in set B is shown with No.Batch (0<a<No. Batch). Set P is created for the components
of parallel style. In this set, the components belonging to the parallel style (CaE Parallel
style) are placed. No.parallel variable shows the number of members in set P.

Figure1.Defination of component sets

Set F is created for the components of fault tolerance style. In this set, the components
that belong to this style are placed (CaE Fault tolerance style). No.fault variable shows
the components existing in this set. Set C includes the caller components, which may

x}α 1 |C S F P B Ccomponent | {C=G
αα

≤≤∪∪∪∪∈
}No.batch style, sequential BatchCcomponent | {C=B ≤≤∈ α

αα
0

}lNo.paralle style, parallelCcomponent | {C=P ≤≤∈ α
αα

0

 } , | {= No.faultstyletolerant fault CcomponentCF ≤≤∈ ααα 0

} ,| {= No.caller style Return and call incaller is C component CC ≤≤ ααα 0
} ,| {= No.caller style Return and call incaller is C component CS ≤≤ ααα 0

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

88

call one or several other components during their performance (Ca is caller in call and
return style). The number of caller components in heterogeneous architecture is shown
by No.callee. Ultimately, set S has been considered for callee components in
architecture (Ca is callee in call and return style). No.callee variable shows the number
of these callee components in the architecture. It should be noted that if a component
belongs to more than one particular style, it should be placed in the sets related to both
styles, and this will bring about a commonality between the intended sets. For instance,
a component may call another while sequentially performing its duty. In this case, this
component should be considered separately in both B and C sets.

Step 3: Mapping the state diagram to Markov model: Markov model is a finite state
machine with the feature that the probability of transfer from one state to another in it
merely depends on the current state of the system rather than the previous states [14, 15
and 16]. Here the state diagram in the previous step which defines the dynamic behavior
of the components is mapped to Markov model. With regard to Markov’s feature, this
mapping can be a one to one or many to one mapping. In other words, the states of
several components may be interdependent while being executed, so they are mapped to
one state in Markov model (many to one mapping) and it is possible that the
components states of the system are independent of each other, in that case they are
mapped in separate states (one to one mapping).
Step 4: Integrating Markov models to create an overall Markov model: The resulting
Markov model in previous section shows the heterogeneous architecture of the system.
Here, the central point is that the number of states of Markov model is often less than
that of state diagram because if there are several components in the architecture, which
are executed in a parallel form, they are mapped in one state in Markov model.

Stage 5: Creating the separate sets for each style and enforcing limitations: In
heterogeneous architecture, one component or more may belong to more than a
particular style, which will cause commonalities between styles; and as a result,
commonalities between states of Markov model of styles. It is assumed that the overall
Markov model of architecture that was obtained in stage 4 has m states, and each state
in this model is shown with Si. It is obvious that each Si state in this model has been
obtained from one to one, or many to one mapping of state diagram components. In
order to analyze the conditions that has caused commonalities between the states of
Markov model. First, sets should be defined for separating the states of Markov model
for each basic style as follows:

Bδ Set consists of states of Markov model of sequential style, where Si has been created
from the mapping of a sequential component existing in the state diagram. In other
words, a sequential component Ca in the state diagram is mapped to a separate state Si
in Markov model of sequential style (Ca maps to state Si). In addition to the definition
of Bδ set, to calculate in continuation, another set called S.B has been created for
Markov model of sequential style, which includes the index of states of Markov model
of sequential style. Pδ set includes states of Markov model of parallel style, where Si
has been created from the mapping of many-to-one of the parallel components. In other
words, several parallel components in the state diagram are mapped to a separate state
in Markov model of parallel style. S.P set includes the index of parallel states existing in

Pδ . Fδ set includes states of Markov model of fault tolerance style, where Si has been

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

89

obtained from the many-to-one mapping of main and support components. In other
words, several interdependent main and support components are mapped to a separate
state in Markov model of fault tolerance style. S.F set consists of the index of states
existing in Fδ .

cs δδ , set include caller and callee states in Markov model of call and return style; and
ultimately, S.S and S.C sets represent indices of caller and callee states. respectively
Commonalities between components and consequently commonalities between Markov
models call for further analysis and study; hence, limitations are taken into
consideration in continuation. These limitations describe the conditions for
commonalities between the states in Markov model, and have been described in figure
as follows [12]. The limitations defined by Wang have been defined so that they do not
put any harm to the performance trend of demand execution by the system. Dark areas
in the figure 2 show the commonalities between states of Markov model.
For instance, as seen in the figure 2, a sequential component in a state of Markov model

of sequential style Bδ cannot be considered as a callee component in sδ set because it

causes trouble in the logic for the sequential execution of components φδδ =∩ sB .
Whereas a sequential component can call one or more components during its sequential

execution; hence, there are commonalities between the set of CB δδ , states φδδ ≠∩ CB .

Figure2.limitation between separate sets in Morkov model [12]

Step 6: Creating the transition probability matrix: To analyze Markov model, the
probability of transfer between various states should be calculated. If Markov model
system has m state, a Pm*m matrix is considered in which each Pi,j shows the
probability of transfer from state i to state j in Markov model and can be derived from
equation1[13]. It should be noted that the probability of transfer between two states
follows Markov feature; that is transfer from Si to Sj is merely dependent on the current
state.

1
(,) / (,) 1 ,

0

m

i j
ni j

t i j t i n state S reaches to state S for i j m
P

otherwise
=

≤ ≤=

∑ (1)

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

90

Where),(jit is the number of transfers that occur from state i to state j and
∑
=

m

n
nit

1
),(
 is

the sum of transfers that may occur from state i to other states.

Step 7: Calculating the visit number of each state in Markov model: In this step, it is
necessary to compute how many times each state is visit since there is a possibility that
the execution control is allocated to a certain state more than once, and this can cause
the system to be in a certain state several times while the program is being executed. For
example, if in a specific state of Markov model, a component calls another component
in a different state several times, it will cause the state in which the called component
exists to be met several times. In case Markov model has m states, equation2 is used to
find out the number of visits for each state Sj . In other words, this equation is
calculated for each state in Markov models [17]:

,
1

.
m n

j j k j k
k

V q P V
−

=

= + ∑ (2)

In the above equation, qj represents probability that the beginning state in Markov
model is Sj state. Pk,j shows the probability of transfer from state Sk to state Sj in
Markov model. Vk shows the number of visit Sk in Markov model. m is the total
number of existing stats in DTMC or Markov model. n is the number of states which
does not have any transfer to other states. The number of times each Sj operation
depends on the Sk states that will reach Sj; of course, by a exception of state in which

skS δ∈ ; because return from a callee component will not affect the operation number of
caller component. For example, suppose a component is in Sj state and calls another
component that is in Sk state several times during its execution, it should temporarily
concede the execution control to that component. After the completion of the demand,
the callee component in Sk State returns the result to the caller component, and the
caller component resumes its execution from where it had postponed. Therefore, it can
be said that the execution control returns from a callee component to its caller, the
execution of the caller component does not start from the beginning. Hence, the number
of return times from callee will not affect the number of execution of caller component.

Step 8: Evaluating the efficiency of the model:
The first state: Components of the basic styles should be separable from one another.
 In this stage, to calculate efficiency, it is necessary to define sets which include the
response time of components of a particular style. In conditions where the components
of different styles are separable from one another, to create sets, the following steps are

taken: Suppose state Si in Markov model belongs to the parallel style piS δ∈ or fault

tolerance style FiS δ∈ , then for this state Si, a separate set is defined. This set comprises
the response time of components executed in that state Si; that is, in order to complete
this set, the name of the ith component Ci is substituted with the response time of that
component. However, in case one state or more in Markov model belong to the

sequential style Bi SS ∈ or call and return style CiS δ∈ , there will be no need to form
separate sets for each state because in each state, whether Sequential or Call and Return,
only one component is executed. Hence, three separate sets; namely callee-time, caller-
time and Batch-time, are defined in each of which the response time of sequential

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

91

components, caller components, and call components are sequentially entered. In
continuation, there is an assessment need for the index of components existing in Batch-
time, parallel-time, fault-time and other sets. Hence, 4 separate sets (B.t,P.t,F.t,C.t,S.t)
have been defined which include the index for the response time of components of basic
styles. Figure 3 shows the assumptions and markings used for these sets. In
continuation, to know more, the response time for sequential components will be shown
with TBi, the response time for parallel components with TPi, the response time for the
caller components with TCi, the response time for the call components with TSi, and the
response time for the fault components with TFi.
The second state: The components of basic styles should not be separable from one
another.
If there are commonalities between the components of basic styles, it means that a
component belongs to more than one particular style. Hence, in order to map the name
of ith component on its response time, limitations should be considered in different sets
as shown in figure 3.
1- If there is a sequential component in the architecture, which calls other components
while executing its sequential performance as a caller, its response time is only
considered in the caller set (caller-time). For instance, the component C1 in the state
diagram of figure 4 is a sequential component because after the completion of the
process, it concedes the execution control to component C2. Moreover, component C1
also plays the role as caller because it calls components C3 and C4 during its execution.
If the response time of component C1 is entered as a sequential component in Batch-
time set and once again as a caller component in caller-time set, its response time will
be considered more than once in the next calculations. Therefore, after surveys, we
concluded that the response time of components which play the sequential and caller
roles are merely considered in the caller-time set.

Figure3.Response time sets of component

} | Biiii T to mapsCB,C{T=Batch.time ∈
 }Bi Batch.time T |{i=B.t ∈

} | { Piiii T to mapsCP,CT=imeParallel.t ∈
 } Pi imeparallel.tT |{i=P.t ∈
 } | Fiiii T to mapsCF,C{T=Fault.time ∈
 } Fi Fault.timeT |{i=F.t ∈
 } | Ciiii T to mapsCC,C{T=eCaller.tim ∈

} Ci eCaller.timT |{i=C.t ∈
 } { Siiii | T to mapsCS,CT=eCallee.tim ∈
 } Si eCallee.timT |{i=S.t ∈

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

92

Figure4.Sequetial component has role of caller component

2-If there is a parallel component in the heterogeneous architecture that calls other
components during parallel execution with other components, or is called by other
components, three states should be taken into consideration as follows:

Figure 5.Architecture component has role of parallel, caller and callee component

The first state: If the parallel component in state Si of Markov model plays roles as
caller and callee in the architecture, its service time is considered as the caller
component in parallel-time set; that is, first the response time of that component is
calculated as the caller; and then, the time obtained in the parallel-time set is taken into
consideration.
For instance in figure 5, C2 and C3 components are executed parallel to one another, and
during the parallel execution, C2 component calls C4 component. Moreover, C3
component calls C5 component. The two components C2 and C3 are called by C1
component. Hence, it can be said that C2 and C3 components are three different roles in
the architecture and that they belong to parallel, call and return styles. Therefore, the
response time of C2 and C3 components are first calculated as callers, and then will be
considered in the parallel-time set.
The second state: If the parallel component merely plays the role as caller in the
architecture, its response time will be considered as the caller component in the parallel-
time set. For example, if in figure 6, C1 and C2 components are concurrently executed
together, just one state will be considered for them in Markov model, and for this state,

a parallel-time set is created. In parallel-time set created for plS state, the response time
of C1 and C2 components is not included because these components play the role as
callers in addition to the parallel role. For example, C1 calls C2 component, and C2
component calls C3 component. Therefore, first their response time as the caller will be
calculated. Then, this time is taken into consideration in the parallel-time set.

c1

c3

c4

c2

c1

c3c2

c4 c5

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

93

Figure 6.Architecture component has role of parallel and caller

The third state: If the parallel component in Si state merely has the callee role in the
architecture, its response time of the component is considered in the parallel-time set.
For instance in figure 7, C2 and C3 components are executed parallel to one another and
may be called by C1 component. The response time of these components is then
considered as the callee in the parallel time set. It should be noted that the response time
of components as callee is in fact the response time of the component itself.
3-If there is a component in fault set components, which the components call, first its
response time is calculated as the caller, and then it will be entered in the fault time set.
4-If the callee component in the architecture plays another role such as caller, parallel
and support in the heterogeneous architecture, the response time of this component will
be entered in the caller-time set. For example, C2 component in figure 8 has three roles:
parallel, caller and callee. The response time of this component is considered in the
callee-time set.
5- If a caller component in Si state of Markov model has the roles of sequential, parallel,
fault and callee, too, the response time of this component will be entered in the caller-
time only if this component does not play the role of parallel and fault. That is, if two
components also have the role of callee along with their parallel role, their response
time will be calculated separately, and the result of this calculation will be entered in the
parallel-time set, and ultimately their maximum will be taken into consideration.
Now, with regard to the sets defined in figure 9, two states are studied to calculate the
response time: In conditions where the architecture components are distributed and
installed on various machines, the delay time between the components should be taken
into account in the response time.

Figure 7.Architecture component has role of parallel and callee

c2c1

c4 c3

c1

c3c2

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

94

Figure 8.Architecture component has role of fault,caller and callee component

},|{. BiTtomapsiCCBiCiTtimeBatch −∈=

 Ci,| TtomapsiCSCPiCiT ∩∩∈
=timeparallel. Ci

,| TtomapsiCCPiCiT ∩∈
 PiTtomapsiCSPiCiT ,| ∩∈

})()(|{. CiTtomapsiCFPSCiCiTtimecaller ∩−∪∈=

}),(|{. SiTtomapsiCPCFSiCiTtimecallee ∪∪∩∈=

∩∪∈

−∪∈
=

Ciiii

Fiiii

TtomapsCCSFCT

TtomapsCCSFCT
timeFault

,)(|

,)(|
.

}.|{. Bi timeBatchTitB ∈= }.|{. Pi timeparallelTitp ∈=
}.|{. Ci timecallerTitc ∈= }.|{. Si timecalleeTits ∈= }.|{. Fi timeFaultTitf ∈=

Figure 9.Response time sets of component

After the analysis of the distribution conditions of components, the architect can use the
relationships presented in previous parts in order to calculate the delay time. After
separate calculation of the response time of each style, the obtained times will be added
together in order to find the response time for the whole system. In continuation of the
last stage, after the calculation of the response time for each style separately, the total
times should be calculated. This time will be the response time of the system with
heterogeneous architecture.

Figure10.Response time of styles if architecture components are in the same machine

c1

c3c2

∑
∈

∈

=
tBj
BSi

ji TVsequentialBatchtimeresponse
.

.

....

∑
∈

∈
=

PSS
itpis

PL

PL

TMAXVparalleltimeresponse
.

.
)](.[..

∑ ∏

∈ ∈

−−=
tSS tFi

iis
tF

Ft

TPVFaulttimeresponse
. .

.

])).((.[.. 11

∑ ∑
∈ ∈

∈ +=
csS ssj

jjtciS
ca

ca

TVTVtimeresponse
. .

.].)[(Return and call..

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

95

4- Illustrative example
 An Example of a software system containing architectural styles is used to validate the
correctness of the new algorithm. The architecture is composed of several components
that each has a specific response time. These components are implemented in two
separate Machines MC1 and MC2.Components C1… C14 are on MC1 and other
components are running on MC2. The system information and the performance
parameter of components is presented in the table1. The expected time spent by the
application in component i per visit is already known, this time can either be obtained
experimentally or may be known a priori.

Table1. An Example of response time of the component based software system

Step1: Defining the architecture with state diagram: The state diagram of system
architecture is shown in Figure 11. Components C3, C4 and C10, C11 are categorized into
parallel style and components C6, C7 and C12,C13 are categorized into fault tolerance
style. Components C1, C2…, C8 have caller/callee relationships. C1 is the first Caller
component that may call Callee components C2, C3, C4 from zero to an indefinite
number of times. Also components C3 and C4 may call components C5, C6, C7. Finally
components C6, C7 may call C8 .Other components are run in sequential manner. In
order to verify the algorithm presented in this paper and to obtain analytical results, the
number of calls is assumed as follows: Component C1 calls C2, C3, C4 only once during
the execution time. Also Parallel components C3, C4 call components C5, C6, C7 and
finally C6 calls C8 only once. Component C7 is a backup for C6 and has a similar
behavior.

Response time per visit:(in Secs)
0.02 Response time of component C2 0.01 Response time of component C1
0.1 Response time of component C4 0.02 Response time of component C3
0.01 Response time of component C6 0.04 Response time of component C5
0.01 Response time of component C8 0.01 Response time of component C7
0.03 Response time of component C10 0.1 Response time of component C9
0.03 Response time of component C12 0.02 Response time of component C11
0.2 Response time of component C14 0.03 Response time of component C13
0.01 Response time of component C16 0.1 Response time of component C15
 0.2 Response time of component C17

The probability that fault tolerant components run correctly:
0.9 Run correctly C7 0.7 Run correctly C 6
0.6 Run correctly C 13 0.3 Run correctly C 12

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

96

Figure11. State diagram of system architecture

Step 2: Identification of basic styles in heterogeneous architecture based on system design
features: Considering the state diagram four basic styles can be identified as follow:

Step 3: Mapping the state diagram to Markov model: In this step mapping with regard to
Markov model can be a one to one or many to one. For example in the figure 12
components c3 and c4 are operated in parallel way, so they are mapped to one state.

Step 4: Integrating Markov models in order to create an overall Markov model: with regard
to the separate Markov models in previous step, overall model can be compute after
integration these models, as shown in figure 13.

Stage 5: Creating the separate sets for each style and enforcing limitations: Separate sets for
different styles in the Morkov model can be compute as follows:

},,,,,{},,,{},{ 13121110711312111071 SSSSSSSSSSSSB =∪=δ },{}{}{ 8383 SSSSP =∪=δ
},{}{}{ 9595 SSSSF =∪=δ

},,{}{}{}{ 531531 SSSSSSC =∪∪=δ
},,,,{}{}{}{}{}{ 6543265432 SSSSSSSSSSS =∪∪∪∪=δ

}171,|{ ≤≤∪∪∪∪∈= ααα SCFPBCCG

},,,,,{ 1716151491 CCCCCCB =
},,,{ 111043 CCCCP =
},,,{ 131276 CCCCF =

},,,,,,{ 8765432 CCCCCCCS =

Journal of Advances in Computer Research

Figure12. Mapping state diagram to Markov model

Research (Vol. 5, No. 3, August 2014

97

(a)

(b)

(c)

(d)

Mapping state diagram to Markov model

2014) 85-100

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

98

Figure13. Markov model of Heterogeneous software architecture

Step 6: Creating the transition probability matrix: In this step the transition probability
matrix can be computed from equation 1:

0000000000000
1000000000000
0100000000000
0010000000000
0001000000000
0000000000000
000005/05/0000000
0000000010000
00000005/0005/000
0000000000100
000000003/03/0003/0
0000000000001
0000003/00003/03/00

Step 7: Calculating the visits number of each state in Markov model: with regard to
equation 2 the number of state visits can be computes as follows:

Journal of Advances in Computer Research (Vol. 5, No. 3, August 2014) 85-100

99

1 2

1 1 ,1 1
1 1

1 2

2
1

1

1

1

1

1

1 2

3

1 2

4

1 2

5

1 2

6

1 2

7 7 1 , 7 1

8 8

. 1

(, 2) (1 , 2) 1

(, 3) (1 , 3) 1

(, 4) (3 , 4) 1

(, 6) (5 , 6) 1

. . 0 / 3, 7

(, 5) (3 , 5) 1

m n

j j k j k k k
k k

k

k

k

k

k

k
k

V q P V V q P V q

V t k t

V t k t

V t k t

V

V t k t

V q P V P Vk

V q P

t k t

−

= =

=

=

=

=

=

=

= + = + = =∑ ∑

= = =∑

= = =∑

= = =∑

= ∑

= = =∑

= + = =∑

= +

= =

1

1

1

1

1

1 2

7 , 8 7

1 2

9 9 7 , 9 7

1 2

1 0 1 0 8 ,1 0 8 9 ,1 0 9

1 2

1 1 1 1 1 0 ,1 1 1 0

1 2

1 2 1 1 1 1 ,1 2 1 1

1 3 1 3 1 2 ,1 3

. . 0 / 1 5,8

. . 0 / 1 5,9

. . . 0 / 3,1 0

. . 0 / 3,1 1

. . 0 / 3,1 2

. .,1 3

k

k

k

k

k

k

k

k

k

k

k

k

V P Vk

V q P V P Vk

V q P V P V P Vk

V q P V P Vk

V q P V P Vk

V q P V Pk

=

=

=

=

=

= =∑

= + = =∑

= + = + =∑

= + = =∑

= + = =∑

= + =
1

1 2

1 2 1 0 / 3 0 / 3V
=

= × =∑

Step 8: Evaluating the efficiency of the model: In the following with respect of the results
in step 8, service time is calculated for separate styles. Finally the response time of
overall system can be computed by rolling up the following calculation for each style.

183/006/0003/003/006/003/0...
.

.
=++++=∑=

∈
∈

tBj
BSi

ji TVBatchtimeresponse

144/0)]02/0,03/0([15/0]14/0,08/0[)](.[..

..
=+=∑=

∈∈
MAXMAXiTMAXVparalleltimeresponse

tpipsPLS PLS

018/0]015/0[]021/0[15/0])).1((1.[..

.
=+=−−∑= ∏

∈
∈ i

TiPVfaulttimeresponse
Fti

tsS
S

Ft
tF

03/002/001/0.].).[(.. 221.

..
=+=+=∑+∑=

∈∈
∈ TVTTVTVtimeresponse

SSJCSCaS
S jjtCiCa

Return and call

5. Discussions
Since architectural styles have special effects on qualitative features, software architects
use them as catalogs in various architectural designs with regard to the characteristics of
the system. Therefore, the advantage of using architectural styles in software
architectural design is obvious. Since most of the architectures designed for large and
complicated systems, are combinations of several varied styles, if the effect of
architectural styles on performance quality attribute is quantitatively measurable, the
architect will be able to make his/her decisions with more facility and care with a view
to the system’s requirement as well as access to different styles.

6. Conclusion and future work
In this paper a new algorithm was presented for performance evaluation of
heterogeneous architectural styles. The algorithm consists of modeling the software
architecture as a Discrete Time Markov Chain (DTMC) and DTMC model then

An Analytical algorithm of component-Based … G. Aghaee Ghazvini, S. Emadi

100

analyzed to get performance feature. This paper focused on service time parameter for
evaluating software architecture; other parameters such as throughput, latency, data
transmission and bandwidth for evaluating heterogeneous software architectural styles
could be discussed in future works. Instead of using the styles mentioned in this paper,
one can use patterns in performance evaluation. Other formal models such as petri net,
colored petri net could improve this research for future works.

Reference
[1] K. Kant, “Introduction to computer system performance evaluation”, 1993.

[2] S. Balsamo, V.D.N. Persone and P.Inverardi, ”A review on queuing network models with finite
capacity queues for software architectures performance prediction”, An International Journal
performance evaluation, ELSEVIER, vol. 51, Feb. 2003, pp.269-288.

[3] H. Hermanns, U.Herzog and J.P. Katoen, “Process algebra for performance evaluation”, An
International Journal Theoretical Computer Science, elsevier vol. 274, Mar. 2002, pp.43-87.

[4] S. Emadi and F. Shams, “From UML component diagram to an executable model based on Petri
Nets”, Proc. the Third International Symposium on transformation Technology, Aug.2008,
pp.2780-2787.

[5] V.abroshan,A.haroonabadi,S.J.mirabedini, ”Evaluation of software architecture using fuzzy
colored petrinets”,management science letters 2013,pp.665-682.

[6] M. sharafi, ”Extending Team Automata to Evaluate Software Architectural Design”, Proc. 32nd
Annual IEEE International Computer Software and Applications Conference,2008 , pp. 393-400

[7] S. Emadi, G. Aghaee Ghazvini, “A New Algorithm for Performance Evaluation of
Homogeneous Architectural Styles”, Journal of Advances in Computer Research, Sari Branch,
Islamic Azad University, Sari, Iran, Vol. 3, No. 2, May 2012, pp. 53-64.

[8] S.M.Sharafi, G.Aghaee Ghazvini, "An Analytical Model for Performance Evaluation Of
Software Architectural Styles", International Conference on Software Technology and
Engineering(ICSTE), Vol 01 , pp 394-398, 2010.

[9] S. Ramamoorthy and S. P. Rajagopalan, “Component-Based Heterogeneous Software
Architecture Reliability(COHAR) Modeling”, International Journal on Computer Science and
Engineering, vol. 02, 2010, pp. 1280-1285.

[10] F. Brosch, H. Koziolek, B. Buhnova and R. Reussner, “Architecture-based Reliability Prediction
with the Palladio component Model”, IEEE Transactions On Software Engineering, 2011.

[11] L.Bass, P.Clements, R.kazman, “Software Architecture in Practice”, 3rd edition, SEI Series in
Software Engineering, Addison-Wesley, 2012.

[12] N.Esfahani, S.Malek, "Utilizing architectural styles to enhance the adaptation support of
middleware platforms", Journal of information and software technology, 2012, pp. 786-801.

[13] W. Wang, D. Pan and M. Chen, ”Architecture-based software reliability modeling”, Journal of
System and Software, vol. 79, Jan. 2006, pp. 132-146.

[14] S. Gokhalea, , W. Eric Wong, J.R. Horganc and S.Trivedi, “An analytical approach to
architecture-based software performance and reliability prediction”, An International Journal of
performance evaluation, Elsevier, vol 58, Dec.2004, pp. 391-412.

[15] V.S.Sharma,P.Jalote,K.S.Trivedi,"Evaluating performance Attributes of layered software
architecture",Springer Journal,Component-Based Software engineering,Lecture Notes in
Computer Science, 2005,Vol.3489, pp.66-81.

[16] A. Sinclair, “Markov Chain Monte Carlo: Foundations & Applications”, lecture note, 2009.

[17] K. Khodamoradi, J. Habibi and A. Kamandi, “Architectural Styles as a Guide for Software
Architecture Reconstruction”,13 th International CSI computer Science, Kish Island, Persian
Gulf, Iran, 2008.

