

69

Journal of Advances in Computer Research
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, I.R.Iran
(Vol. 4, No. 3, August2013), Pages: 69-81
www.jacr.iausari.ac.ir

Solving Flexible Job-Shop Scheduling Problem using
Hybrid Algorithm Based on Gravitational Search

Algorithm and Particle Swarm Optimization

Behnam Barzegar1*, Homayun Motameni2
 1) Department of Computer Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran

2)Department of Computer Engineering, Islamic Azad University, Sari Branch, Sari, Iran
barzegar@iauns.ac.ir; motameni@iausari.ac.ir

Received: 2013/07/04; Accepted: 2013/08/14

Abstract
Job Shop scheduling problem has significant importance in many researching

fields such as production management and programming and also combined
optimizing. Job Shop scheduling problem includes two sub-problems: machine
assignment and sequence operation performing. In this paper combination of
particle swarm optimization algorithm (PSO) and gravitational search algorithm
(GSA) have been presented for solving Job Shop Scheduling problem with criteria of
minimizing the maximal completion time of all the operations, which is denoted by
Makespan. In this combined algorithm, first gravitational search algorithm finds
best mass with minimum spent time for a job and then particle swarm Optimization
algorithm is performed for optimal processing all jobs. Experimental results show
that proposed algorithm for solving job shop scheduling problem, especially for
solving larger problem presents better efficiency. Combined proposed algorithm has
been named GSPSO.

Keywords: Gravitational search algorithm, Particle Swarm Optimization algorithm,

Flexiblejob shop scheduling

1. Introduction

Scheduling has significant importance in manufacturing and industrial services and
most often has been used in many cases such as production scheduling, transportation,
provisions, communication and information process. Thus, scheduling problem has
been under care of many researchers. In this paper, Job Shop Scheduling problem has
investigated and its aim is performing all jobs in minimum run time. For suitable
scheduling jobs, we should consider that one operation could be performed on set of
machines and for doing so, JSP should solve two following sub-problem:

1) Assigning a suitable machine from set of machines to each operations.
2) Sequencing each operation on the selected machine.

Many of well-known scheduling problems are among NP-hard problems. It means
that by increasing value of problem parameters, too much time is spent for offering an
optimal solution, and sometimes solving problem would be impossible. Solving this
kind of problems has encouraged many researchers to find an optimal solution for
minimizing operation run time and also has decreased complexity of these kinds of

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

70

problems. Job Shop Scheduling problem is among NP-hard problems and we would
solve this problem using our proposed combined algorithm called GSPSO.In this paper
we have used combination of PSO and GSA algorithms for finding optimal solution in
order to decrease operation run time.

In this method, first gravitational search algorithm finds best mass, i.e. best machine
arrangement (minimum spent time) and then particle swarm algorithm processe it to
minimize the maximal completion time of all the operations, which is denoted by
Makespan.

2. Related work

The job-shop scheduling problem (JSP) has been studied for more than 50 years in
both academic and industrial environments and also recently, many researchers have
been done it for the flexible job-shop scheduling problem (FJSP).

Bruker and Schlie et al [2] who first considered this problem, offered a multilateral
algorithm for solving flexible job shop problem with two jobs. In real world, for solving
a problem with more than two jobs, two perceptions have been used: hierarchical
perception and integrated perception.

In hierarchical perception, assigning any operation to the machines and determining
operation sequences are performed individually. In other words, assignment and
sequence determination are independent. But in integrated perception, sequence
determination is based on this idea that in order to decreasing complexity, main problem
should be decomposed into two problems called assignment and sequence
determination. As this perception decomposes into two problems of assignment and
sequence determination, is used more. Brandimarte et al [1] was the first one who used
this perception for FJSP. He specified path determination with distribution rules and
then focused on solving scheduling problem with TS algorithm. Xia and Wu et al [3]
have presented a hybrid optimizing perception for scheduling multi object flexible job
shop problems. In their study, combination of two methods SA and particle swarm
optimization have been used for optimizing flexible job shop problem. PSO algorithm is
applied for assignment problem either for determining any operations use whit machine.
Value of object function is calculated by SA algorithm and implemented for each
particle in PSO algorithm once.

Mastrolilli and Gambardella et al [4] proposed a tabu search procedure with effective
neighborhood functions for the flexible job shop problem. Many authors have proposed
a method of assigning operations to machines and then determined sequence of
operations on each machine. Pezzella et al [5] and Gao et al [6] proposed the hybrid
Genetic and variable neighborhood descent algorithm for this problem. There are only a
few papers considering parallel algorithms for the FJSP.

Yazdani et al [7] propose a parallel variable neighborhood search (VNS) algorithm
for the FJSP based on independent VNS runs. Defersha and Chen et al [8] describe a
coarse-grain version of the parallel genetic algorithm for the considered. FJSP basing on
island model of parallelization focusing on genetic operators used and scalability of the
parallel algorithm. Both papers are focused on parallelization side of the programming
methodology and they do not use any special properties of the FJSP.

The rest of the paper is as following: First, problem analyzing and in second section,
particle swarm optimizing algorithm are presented. In third section, gravitational search
algorithm is explained and finally in four section, we explain proposed combined

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

71

method. Also In five section, experimental results and in six section, conclusion is
presented.

3. Flexible job-shop scheduling problem

In this section, mathematical model (combined of integer and linear programming) is
presented for better understanding problem and also applying it for solving small
problems optimally.

Flexible job shop scheduling problem contains N job on M machines. Each job
includes some operations and for each operation there is an opportunity to use set of
operational machines. Since flexible job shop scheduling problem has specific
importance in production centers, it attains large attention from managers of production
units.

Furthermore, specific mathematical characteristics of this problem that have offered
effective strategies for solving this problem are interesting for researchers of this area of
mathematics field.

The job-shop scheduling problems with multi-purpose machines (MPM job-shop
problem) may be formulated as follows.

Simple form of flexible job shop scheduling production systems is classic job shop
scheduling problem which schedules n job of J1, J2,…,Jn on set of M machines of
M1,M2,…,Mm .

Each job has hj operation that must be implemented serially. Subscript j indicates
job, subscript h indicates operation and subscript i presents machines. The purpose of
scheduling this problem is to determine the sequence of operations for each machine, so
that a predefined object function like construction duration gets optimized.

Each job has one sequence of Oj,h operations; h=1,…,hj where Oj,h presents h-th
operation of j-th job, and hj presents number of required operations for j-th job.
Machines set is presented by M = {M1, M2…, Mm}. Subscript i presents machine and
subscript j presents job and subscript h is applied for operation.

To implement each h operation on j job (presented as Oj,h), set of jobs are assigned,
which have capacity of performing that operation.

This set is presented as , ⊂M. Each machine would have specific process time for
implementing operation. This specific process time for implementing each operation is
presented with Pi,j,h.

In this study, we define Mj,h set with variable a i,j,h with value one and zero. If variable
a i,j,h has value 1, it means that machine j has capacity for implementing operation Oj,h.
For assignment, we use variable yi,j,h with value one or zero. This variable is determined
by model. If this variable has value 1, it means that among operational machines for
implement Oj,h operation, machine j is selected.

Eventually, result solution from variable yi,j,h gives assignment problem solution (i.e.
each operation among assignable machine is performed by which machine).

For solving sequence problem, we consider initial time tk,l and final time ftk,l for each
operation. Value of those variables is determined by model. Moreover, an assumed job
whose number of its operations is equal to number of machines is considered as initial
job.

In this model, we use variable xi,j,h,k,l with value one or zero. If this variable has value
1, it means that operation Ok,l on machine j is implemented immediately after operation
Oj,h. Also, sei,f,k presents start up time of job k after a job from family f on machine i.

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

72

 , = 1 ∈ 0 ℎ
 , , = 1 , ℎ 0 ℎ

Variables of this model include: , , = 1 ℎ , 0 ℎ , , , , = 1 , , ℎ 0 ℎ

Cmax : Maximum time of constructing duration
m : A large number
tk,l: Initial time for operation Ok,l
ftk,l: Final time for operation Ok,l
Pi,k,l: Process time for operation Ok,l on machine i
Si,j,k: Start up time for job k on machine j if previous job be job j.
With having parameters Si,f,k, Pi,j,h , a i,j,h , fa ,m ,n problem FJSP is modeling as

follows:
(1) minCmax
(2) tk,l+ yi,k,l.pi,k,l≤ fik,lfor i=1,…,m k=1,…,n l=1,…,hk
(3) si,j,k=∑Ff,j.sei,f,kfor i=1,…,m j=1,…,n k=1,…,n f=1,…,fa
(4) fik,l≤ tk,l+1 for k=1,…,n l=1,…,hk-1
(5) fik,l≤ Cmax for k=1,…,n l=1,…,hk
(6) yi,k,l≤ a i,k,l for i=1,..,m k=1,…,n l=1,…,hk
(7) tj,h+pi,j,h+si,j,k≤ tk,j+(1-xi,j,h,k,l)M for j=0,...,n k=1,…,nh=1,…,hj

l=1,…,hki=1,…,m
(8) fj,h+si,j,k≤ tj,h+1+(1-xi,k,l,j,h+1)M for j=1,...,n k=0,…,n h=1,…,hj-1

l=1,…,hki=1,…,m
(9) ∑yi,j,h=1 for j=0,..,n h=1,…,hj i=1,…,m
(10) ∑∑xi,j,h,k,l=yi,k,lfor i=1,…,m k=1,…,n l=1,…,hk
(11) ∑∑xi,j,h,k,l=yi,k,l for i=1,…,m j=1,…,n h=1,…,hj
(12) xi,j,h,k,l≤ yi,k,l for j=1,..,n k=1,…,n h=1,…,h l=1,…,hki=1,…,m
(13) xi,j,h,k,l≤ yi,k,l for j=1,..,n k=1,…,n h=1,…,hj l=1,…,hki=1,…,m
(14) xi,k,l,k,l =0 for i=1,..,m k=1,…,n l=1,…,hk
(15) si,k,k, =0 for i=1,..,m k=1,…,n
(16) xi,j,h,k,l,yi,j,h∈{0,1}
Constraint 1 is the object function of the problem which minimizes maximum

completion time. Constraint 2 presents startup time and finishing time of each
operation. Constraint 3 introduces run time for each job. Constraints 4 and 8 cause those
pre-requirement limitations which are respected. Constraint 5 defines Cmax.

Constraint 6 causes that required machines for each operation are selected among the
assignable machines for that operation. Constraint 7 guarantees that if operation l from
job k is performed after operation h from job j on machine i, its startup time is after
finishing operation h from job j and also after process time of preparing machine i.

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

73

Constraint 9 causes that among all assignable machines for a specific operation, just
one machine is selected. Constraints 10 and 11 state that just one operation after and
before other operations are performed on machine i.

Constraints 12 and 13 state that each operation after and before other operations is
performed just on its assignable machine. Constraint 14 guarantees that any operation is
processed once.

Table1 shows case of performing 3 jobs on 5 machines. Each job includes three
following operations and Figure1 shows another case of performing 3 jobs (with three
sub-operations) on 3 machines and each run time is known as Gunt diagram.

Table 1. Illustration of an example of 3 * 5 problem

M5 M4 M3 M2 M1

5 7 3 9 1 O1,1
4 6 2 5 3 O1,2 J1
3 4 1 7 6 O1,3

8 3 5 4 1 O2,1
3 9 4 8 2 O2,2 J2
4 2 1 5 9 O2,3

2 3 9 8 1 O3,1
3 4 2 9 5 O3,2 J3
6 1 7 5 4 O3,3

Figure 1. A Gantt-Chart representation of a solution for a 3 * 3 problem

4. Particle swarm optimization

In particle swarm optimization method, each proposed solution for respected
problem that is called a particle, is considered as a point in search space.

There is one-to-one correspondence between space points and those vertices which
are started from coordinate origin. Thus, we display position of particles as vertex. In
each stage, obtained set of solution changes and we try to find better solutions for the
respected problem.

If we consider searching space as a D-dimensional space, then we could display
position of i-th particle as X and its speed asV . Eventually, movement of bird
populations is obtained with two following equations: V (t + 1) = W × V (t) + c r lbest (t) − X (t) + r gbest (t) − X (t) (1) X (t + 1) = X (t) + V (t)(2)

Where d = 1,2,… ,D and i = 1,2,… , N and N is equal to size of birds population, n is
irritation number, W is inertia mass, c and c are respectively cognitive and social

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

74

coefficients which usually are selected in range of [0,2] and r and r are random
numbers which usually are selected in range of [0,1].

Inertia mass parameters provide suitable distribution for speed in searching local and
absolute optimal points. Selecting low values for these parameters provide local points,
and choosing high values for them search a larger area, which in fact helps choosing
absolute optimal points. In this paper, we first consider high value for this parameter
(W) and gradually decrease this value while running program (Shi and Eberhartet al
[14,15]). W = W − ()× (3) W andW are respectively initial and final values of inertia weight.

(W), iTer is maximum number of stages and n is the number of current stage. As
there is no process for controlling speed of current birds, it is necessary to consider a
maximum value for it (V) which no bird should exceed of this value (Meraji and
Afshar et al [16]).

Birds change their speed based on the best response that has obtained till now () and the best response in current generation(). This speed is sum with bird
position and so new position of bird is obtained. If current best position be better than
best global position, this best current position is replaced with best global position. This
process is repeated according to the size of bird populations.

5. Gravitational search algorithm

 In GSA, optimization is done using gravitational rules and movement rules in an
artificial discrete-time system.

System area is the same as problem definition area. According to gravitational rule,
act and state of other masses are recognized through gravitational forces. So, this force
could be used as a tool for transferring information. We can also use proposed solution
for solving any optimization problem within which any answer of problem is within
definable as a state in space and its degree of similarity with other answers of problem
is mentioned as a distance. Value of masses in each problem is also mentioned in
regards to purpose function. In first step, system space is determined. Area includes a
multi-dimensional coordinated system in problem definition space. Each point in space
is one of the answers of problem and search factors are also series of masses.

Each mass has three properties:
a) Mass state, b) Gravitational mass, c) Inertia mass.
Abovementioned masses are resulted from active gravitational mass and Inertia mass

concepts in physics.
In physics, active gravitational mass is criteria of degree of gravitational force around

a body, and Inertia mass is criteria of body resistance against movement. These two
properties could not be equal, and their amounts are determined based on the suitability
of each mass. Mass state is a point in space which is one of the problem answers. After
forming system, its rules are determined.

We suppose that there are only gravity rule and movement rule. Their general forms
are similar to nature rules and have defined as below:

Gravity Rule: Any mass in an artificial system attracts all other masses toward itself.
The value of this force is proportional with gravitational mass of related mass and
distance between two masses.

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

75

Movement Rule: Recent speed of each mass is equal to sum of the coefficient of last
speed of that mass and its variable speed. Also, acceleration or variable speed is equal to
delivered force on mass, divide on amount mass.

 In following, we explain principals of this algorithm: Suppose that there is a system
with S masses and within it, state of mass i-th is defined as relation (1), where x denotes
position of mass i-th in dimension d and n denotes number of dimensions in the search
space. X = x , … , x , … , x (4)

Worst (t) and Best (t) are for minimization problems and are calculated with relations
(5) and (6).(For maximization problem is just enough to consider the inverse of these
two relations) Best(t) = max ∈{ ,…, } ()(5) Worst(t) = min ∈{ ,…, } ()(6)

We can account fitness of recent population with relation (7), and obtain mass of
factor i-th in time t (i.e. with relation (8)), where M and fit are denote mass and fitness
of factor i-th in time t, respectively. q (t) = () () ()(7) M(t) = ()∑ () (8)

In this system, force F is delivered on mass i-th from mass j-th in time t in the
direction of dimension d, in which value of this force is obtained base on relation (9),
And in relation (9), G(t) is gravity constant in time t which is regulated in the beginning
of operating algorithm, and is decreased by the time. F (t) = () () , () x (t) − x (t) (9)

R is ECLIDIAN distance between factor i-th and factor j-th that is defined as relations
(10),” ε ” is also a small value for avoiding denominator from becoming zero.

 ij = (x − x) + (y − y) + (z − z) +⋯ (n − n) (10)
The force delivered on mass i-thin direction d at time t is equal to resultant of total

force from k superior mass in population (k is better factor than recent factor).
Kbest denotes series of k superior masses in population. K value is not constant and

is defined as a time-dependant value, such that all masses at the beginning influence on
each other and deliver force, but by passing time, number of effective members in
population is decreased linearly. And for accounting sum of delivered forces on mass i-
th in dimension d, we could write (11). In this relation, rand is a random number with
normal distribution in the interval [0,1]. F (t) = ∑ rand j × G(t) , () () () x (t) − x (t) (11)

According to Newton's second movement rule; each mass takes acceleration in the
direction of dimension d, which is proportional with delivered force on that mass, and
has mentioned in relation (12). d (t) = () () ⟹ d (t) = ∑ rand j × G(t) , () () x (t) − x (t) (12)

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

76

And speed of each mass is equal to sum of coefficient of mass recent speed and
acceleration, and is explained as relation (13). In this relation, rand is a random number
with normal distribution in the interval [0,1], and its random property is resultant of
keeping search in random mood. V (t + 1) = rand × V (t) + a (t)(13)

Now, mass should moves. It is obvious that more speed of the mass cause more
movement in that dimension. New state of factor i-this mentioned by relation (14). x (t + 1) = x (t) + V (t + 1)(14)

At the beginning of forming system, each mass (factor) is randomly positioned in
one point of space that is an answer of problem. In each moment, masses are evaluated
and then changing in the position of each mass is calculated after solving relations 11 to
14. System parameters are updated in each stage (G, M).

Stop condition could be determined after passing specified time. In Figure2, semi-
code of this algorithm has been presented: (Rashedi and Nezamabadi-pour and Saryazdi
et al [13]).

1) determining system area and initial valuing;

2) initial positioning the masses;

3) evaluating masses;

4) updating parameters G, best, worst and M ;

5) calculating delivered force on each mass;

6) accounting acceleration and speed of each mass;

7) updating position of masses;

8) if stop condition doesn’t meet, go to phase3.
Figure 2.Semi-code of gravitational search algorithm

6. Proposed combined method

In our proposed algorithm, we first assign an array of sub-operation to each bird in
PSO searching space and place some mass in GSA gravitational space, such that each
mass in GSA searching space has an array which consists of number of selected
machines. It means that by using GSA, we assign the best machine to one bird for
performing each sub-operation and repeat this process for all birds by putting sub-
operations in one circle. Finally, in return to PSO algorithm we obtain optimal
arrangement for jobs.

This method first guarantees that each bird accepts sub-operation of several jobs, but
one sub-operation couldn’t be initialized for several birds. Position of each bird in space
is determined randomly.

We fill k best array with initial value of -1. We use following sample code for
obtaining superior factors, which apply force on a mass from different dimensions
(Figure 3).

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

77

Figure 3.calculate k_best array

Based on applied force by each factor on respected mass, GSA should be calculated
(sum of force and distance).

We could use the following pseudo-code for these calculations (Figure 4).

Figure 4.calculate of Force

To obtain fitness in GSA algorithm function, we calculate sum of the spent time on
machines for each particle in searching space, which is known as heuristics.

Now, new parameters of acceleration speed and distance should be updated (Figure
5).

while (k < mass_Num)
{
 for(j = 0;j < mass_Num-1 ; j++)
k_Best[j] = -1;
 for(i=0; i <= mass_Num-1; i++)
 {

 gls_Loc_Arr[k])=!if (gls_Loc_Arr[k])
{
if (k_Best[i] == -1)
{

k_Best[i]= gls_space[gls_Loc_Arr[k]];
 break;
}
}
 }
}

l = 0;

while (k_Best[l] != -1){

)if (k_Best[l] > 0
k_Best_Temp = k_Best[l] - 1;

else
k_Best_Temp = 0;

R=(Math.Sqrt((Math.Pow((gls_Loc_Arr[k_Best_Temp] –
gls_Loc_Arr[k]),2) +

Math.Pow((gls_Loc_Arr[k_Best_Temp] –gls_Loc_Arr[k]), 2))));
f_Arr[k] = f_Arr[k] + ((rand_obj.Next(100)/100.0) *G*
 (Math.Abs((gls_Hiu[k_Best_Temp] - gls_Hiu[k])) /

* Math.Abs(gls_Loc_Arr[k_Best_Temp] –(R+E))
 gls_Loc_Arr[k]));}

a_Mass = f_Arr[k] / gls_Hiu[k];

v_Arr[k] = ((rand_obj.Next(100)/ 100.0)*v_Arr[k]) +a_Mass;

new_loc = (gls_Loc_Arr[k] + v_Arr);

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

78

Figure 5.calculate of distance

The important point is that after finding optimal arrangement of machines for a bird,
we assign those machines to the bird in PSO space. For this purpose, we could use
following pseudo-code and an intermediate array called PSO_Machine_Swarm (Figure
6).

Figure 6.PSO_Machine_Swarm

In PSO algorithm, fitness of each bird should be used in appropriate with performed
sub-operation on machines and so we obtain sum of spent time on machines. For this
purpose, we consider the below code (Figure 7):

Figure 7.calculate of Fitness

In fitness function, we should determine Ibestand gbest. Following pseudo-code is
presented for this purpose (Figure 8):

Figure 8.calculate of lbest and gbest

Now we should implement related formula for PSO (Figure 9).
It should be noted that applied machines for each sub-operation ought to be changed

in appropriate with birds move in their own place (row of machine array), but birds
don’t exit from optimal found state in GSA algorithm.

for (i = 0;i<mass_Num; i++)
{
 pso_Machin_Swarm[min_Mass_Index,i]=
 mass_Arr[min_Mass_Index,i];
}

for (i=0;i< swarm_Num; i++)
{
for (int j=0;j< act_Num; j++)
{
hiu_Index=swarm_Arr[i, j] ;
 machin_No = pso_Machin_Swarm[i, j] ;
 act_No = j;
 hiu_Swarm[hiu_Index]=hiu_Swarm[hiu_Index]+
machin_Act_Time[machin_No, act_No];
 }
}

for (int i=0; i<swarm_Num; i++)
{
if (hiu_Swarm[i]< l_Best[i])
{l_Best[i]=hiu_Swarm[i];
lBest_Loc[i]=loc_Arr[i];
lBest_Loc[i]=loc_Arr[i];
}
if (hiu_Swarm[i] < g_Best)
 { g_Best=hiu_Swarm[i];
 }
}

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

79

Figure 9.implement related formula for PSO

Table 2. Experimental results
 Edata rdata vdata
Data HJT DP MG MX GSFJ CPU HJT DP MG MX GSFJ CPU HJT DP MG MX GSFJ CPU
101 611 609 609 609 609 35.6 574 574 571 574 574 48.8 573 572 570 572 573 54.1
102 655 655 655 655 655 3.1 535 532 530 535 533 64.7 531 529 529 529 529 44.3
103 573 554 550 563 557 25.2 481 479 478 478 478 82.4 482 479 477 479 482 50.7
104 578 568 568 568 569 75.5 509 504 502 509 507 49.8 504 503 502 502 502 67.6
105 503 503 503 503 503 4.1 460 458 457 457 458 43.4 464 460 457 460 460 81.9
106 833 833 833 833 833 45.9 801 800 799 799 800 94.2 802 800 799 802 802 12.7
107 765 765 762 765 765 37.3 752 750 750 750 750 86.5 751 750 749 750 750 36.3
108 845 845 845 845 845 52.2 767 767 765 769 767 54.3 766 766 765 766 766 68.7
109 878 878 878 878 878 59.4 859 854 853 853 855 104.5 854 853 853 853 853 78.2
110 866 866 866 866 866 54.6 806 805 804 804 805 98.7 805 805 804 807 805 12.8
111 1106 1103 1103 1103 1104 119.6 1073 1072 1071 1071 1071 113.3 1073 1071 1071 1071 1071 171.6
112 960 960 960 960 960 80.2 937 936 936 936 936 122.5 940 936 936 936 936 211.1
113 1053 1053 1053 1053 1053 89.7 1039 1038 1038 1038 1038 109.4 1040 1038 1038 1038 1040 127.8
114 1151 1123 1123 1123 1123 50.1 1071 1070 1070 1070 1070 61.1 1071 1070 1070 1070 1070 191.9
115 1111 1111 1111 1111 1111 134.3 1993 1990 1990 1990 1990 119.6 1091 1089 1089 1089 1089 257.4
116 924 915 892 892 895 44.2 717 717 717 717 717 14.9 717 717 717 717 717 3.5
117 757 707 707 707 707 93.0 646 646 646 646 646 28.8 646 646 646 646 650 3.9
118 864 843 842 850 844 77.8 674 669 666 674 672 44.1 663 663 663 663 663 3.6
119 850 796 796 796 797 100.2 725 703 700 715 710 33.3 617 617 617 617 617 4.5
120 919 864 857 865 862 186.6 756 756 756 756 756 82.3 756 756 756 756 756 2.8
121 1066 1046 1017 1046 1041 133.4 861 846 835 856 846 182.6 826 814 806 836 825 172.1
122 919 890 882 918 910 99.1 790 772 760 784 779 110.2 745 744 739 744 743 264.6
123 980 953 950 972 970 101.1 884 853 842 853 851 199.7 826 818 815 826 822 214.4
124 952 918 909 918 915 152.7 825 820 808 825 824 161.1 796 784 777 784 783 299.5
125 970 955 941 970 968 124.2 823 802 791 823 818 135.4 770 757 756 757 757 312.7
126 1169 1138 1125 1156 1141 179.5 1086 1070 1061 1081 1076 214.8 1058 1056 1054 1058 1057 260.0
127 1230 1215 1186 1230 1213 135.4 1109 1100 1091 1106 1110 260.0 1088 1087 1085 1087 1089 155.3
128 1204 1169 1149 1169 1152 210.0 1097 1085 1080 1097 1091 178.8 1073 1072 1070 1073 1073 212.1
129 1210 1157 1118 1178 1163 212.6 1016 1004 998 1008 1007 155.5 995 997 994 995 997 438.8
130 1253 1225 1204 1225 1224 276.1 1105 1089 1078 1089 1085 270.9 1071 1071 1069 1071 1071 355.8

count++;
Wn = Wmax - (((Wmax - Wmin) * count) / iTermax);
r1=(rand_Obj.Next(10)/10.0);
r2=(rand_Obj.Next(10)/10.0);
loc = 0;
for (i=0; i < swarm_Num; i++)
{
v_Temp= ((Wn * v_Arr + (c1 * r1 *
 (Math.Abs(lBest_Loc[i] - loc_Arr))) +
(c2 * r2 * (Math.Abs(side_X - loc_Arr)))));
if (v_Temp > v_max)
v_Arr = v_max;
else
v_Arr = v_Temp;
}

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

80

7. Experimental results

The C#.Net 2008 language programming was used for testing the proposed algorithm
and in this paper we have used three different sets of computational experiments in
order to evaluate the efficiency to test our new proposed algorithm. We have used the
Intel Pentium Core i5 Duo 2.4GHz Processor and 4GB RAM configuration system with
Windows XP as the platform to run this algorithm and achieved the following results.

Consider first MPM job-shop instances with related machines generated in Hurink
et al [9]. These instances are derived from the classical job shop instances, proposed in
(Lawrence, [12]), by adding some machines to candidate sets of operations. More
precisely, each set Fi,j contains the machine used in the original problem, plus any of the
other machines with a given probability. With different values of the probability, three
sets of instances of different degree of flexibilities are generated. Each operation is
associated on average with (m/2) machine in a vdata instance, with two machines in a
vdata instance, and with less than two machines in aedata instance.

The new method denoted GSPSO is compared with the hierarchical methods of
(Hurink et al [9]) hereafter denoted HJT and Dauzere-Peres and integrated approaches
of Dauzere-Peres and Paulli [11] (denoted DP) and Mastrolilli and Gambardella [4]
(denoted MG) and Mati and Xie [10] (denoted MX). Table 2 provides the results of this
comparison. Column CPUs presents the computation times of the new method.

8. Conclusion

In this paper, a proposed algorithm called GSPSO has used for solving flexible Job
Shop Scheduling problem, which is a combination of PSO and GSA algorithms.
According to the obtained results, this algorithm has an acceptable ability in decreasing
run time of all jobs and we could use it in different scheduling problems.

Comparing results of proposed algorithm with other algorithms we realize that this
algorithm most of the times offers better results. In very low populations, proposed
algorithm finds solution with some delay, but in higher population based on amount of
calculations, quality of solutions would be ideal. Also, suitable values forc and c
learning coefficients are in the range of[0.5,1.75]. First, we consider high value for
inertia weight coefficient and gradually decrease this value while performing algorithm
to its minimum value.

9. References

[1] Brandimarte ,Routing and scheduling in flexible job shop by tabu search. Annals of Operation
Research. 41: 157-183, 1993.

[2] Bruker P, Schlie R, Job shop scheduling with multi-purpose machines. Compu. 45: 369-375, 1990.
[3] Xia W, Wu Z, An effective hybrid optimization approach for multi-objective flexible jobshop

scheduling problems. Computers & Industrial Engineering. 48: 409–425,2005.
[4] Mastrolilli M, Gambardella LM, Effective neighborhood functions for the flexible job shop

problem. Journal of Scheduling. 3(1): 3–20, 2000.
[5] Pezzella F, Morganti G, Ciaschetti G, A genetic algorithm for the flexible job-shop scheduling

problem. Compu.& Operations Res. 35: 3202–3212, 2008.

Journal of Advances in Computer Research (Vol. 4, No. 3, August 2013) 69-81

81

[6] Gao J, Sun L, Gen M, A hybrid genetic and variable neighborhood descent algorithm for flexible
job shop scheduling problems. Compu.& Operations Res. 35: 2892–2907, 2008.

[7] Yazdani M, Amiri M, Zandieh M, Flexible job-shop scheduling with parallel variable
neighborhood search algorithm. Expert Sys.withAppli. Intl. J. 37(1): 678–687, 2010.

[8] Defersha FM, Chen M, A coarse-grain parallel genetic algorithm for flexible job-shop scheduling
with lot streaming. Proc. Intl. Conf. Compu. Sci. &Engg. 1: 201–208, 2009.

[9] Hurink J, Jurisch B, Thole M, Tabu search for the job-shop scheduling problem with multi-
purpose machines. OR Spektrum. 15:205-215.

[10] Mati Y, Xie X, A genetic-search-guided greedy algorithm for multi-resource shop scheduling
with resource flexibility. IIE Transactions. 40:1228-1240, 2008.

[11] Dauzere-peres S, Paulli J, An integrated approach for modeling and solving the multiprocessor
job-shop scheduling problem using tabu search. Annals of Oprations Research. 70:281-306,
1997.

[12] Lawrence S, Supplement to resource constrained project scheduling: an experimental
investigation of heuristic scheduling techniques. Technical report, GSIA, Carnegie-Mellon
University, Pittsburgh, PA, 1984.

[13] Rashedi, E., Nezamabadi-pour, H., Saryazdi, S, BGSA: binary gravitational search algorithm.
Natural Computing, vol. 9, pp. 727-745, 2010.

[14] Shi Y, Eberhart R, Parameter selection in particle Swarm Optimization. In: Porto VW,
SaravananN,Waagen D and Eiben AE (eds) Evolutionary Programming VII. 611-616, 1998.

[15] Shi Y, Eberhart R. Empirical study of Particle Swarm Optimization. Proceeding IEEE
International Congres Evolutionary Computation, Washington, DC., USA.1945-50, 1999.

[16] Meraji S, Afshar M, Afshar A, Reservoir Operatin by Particle Swarm Optimization
Algorithm.7th International Conference of Civil Enginnering. Icce7th. Tehran. Iran, 2005.

Solving Flexible Job-Shop Scheduling Problem … B. Barzegar, H. Motameni

82

