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Abstract 
The Gravitational Search Algorithm (GSA) is a novel optimization method 

based on the law of gravity and mass interactions. It has good ability to search for 
the global optimum, but its searching speed is really slow in the last iterations. So 
the hybridization of Particle Swarm Optimization (PSO) and GSA can resolve the 
aforementioned problem. In this paper, a modified PSO, which the movement of 
particles is also based on getting away from individual worst solution other than 
going toward the best ones, is combined with GSA, named (PSOGSA) and is applied 
on ELD problem. A 6 unit case study considering transmission loss, prohibited 
zones and ramp rate limits and also a 40 unit system with valve point loading effect 
has been used to show the feasibility of the method. The results show fast and great 
convergence compared to the many other previously applied methods. 

 
Keywords: Economic Load Dispatch, Gravitational search, particle swarm optimization, 

Valve point loading, Optimization 
 

 

1. Introduction 

     Economic load dispatch (ELD) is one of the most important tasks in electric power 
system generation. ELD is the fundamental issue during unit commitment process. Over 
the years, various methods has been applied on ELD problem, considering various 
constraints that make the problem more real such as transmission loss, valve point 
loading effect, generator prohibited zones, ramp rate limits, etc. In the most basic type 
of ELD, Conventional linear methods such as lambda iteration method, gradient method 
and the Newton method [1] were used ,assuming that the incremental costs of the 
generators are monotonically increasing functions. But when the aforementioned 
nonlinearities are being taken into account, this assumption become infeasible[2]. In the 
past decade, several non-linear heuristic computational algorithm techniques such as 
Genetic Algorithm (GA) [3, 4], Tabu Search (TS)[5], Differential Evolution (DE)[6], 
simulated annealing(SA) [7], Hopfield neural network [8], particle swarm 
optimization(PSO)[9,30], Incremental articial bee colony with local search 
(IABC)[10], ESO[11], DEC-SQP[12, 13], ST-HDE[14], HPSOM[15], SOHPSO[16], 
TM[17], improved GA[18], TSA[19], GAAPI[20] etc. have been used to solve 
nonlinear, non-convex ELD problems each having advantages and disadvantages 
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compared together in giving better quality solutions, less Execution time, minimum 
function evaluation numbers etc. 
      Particle swarm optimization[21, 22] was a popular heuristic algorithm that had been 
applied on many optimization problems over the years including ELD problem. 
Although it was very simple but the global optimum solution was not comparable to the 
later methods. On the other hand a recently introduced method called gravitational 
search algorithm (GSA)[23] had also been applied on ELD, giving better and more 
quality solutions but suffering from long execution time, specially for last iterations. So 
it seemed beneficial to apply a hybrid method to ELD problem which exploit both fast 
convergence and high quality optimum solutions from two mentioned methods. So in 
this paper a hybrid PSOGSA algorithm is applied on ELD problem. In this modified 
algorithm the PSO is modified in such way that the movement of particles is also based 
on the getting away from individual and global worst solution other than going toward 
the best ones. Also the algorithm constants have a small decreasing variation after each 
iteration of the algorithm. This modified PSO is combined with gravitational search 
algorithm to solve its slow Execution time in the last iterations, making the hybrid 
PSOGSA algorithm. To our knowledge this method has not been applied to ELD 
problems yet.  The case studies considered in this work, are a 6 generating unit with 
prohibited operating zones, transmission loss, ramp rate limits and also a 40 unit system 
with valve point loading effect which greatly challenge the modified method. 

2. Economic load dispatch problem 

2.1 ELD objective function   
      ELD can be formulated as an optimization problem with the goal of minimizing the 
total power system generation cost, as follows: 

1

min ( )
N

i i
i

F P
=
∑  (1) 

Where N  is number of generator units, iP  is the power output of each unit and iF is the 
production cost of the ith unit given as: 

2( )i i i i i i iF P a P b P c= + +  (2) 

However, valve-point loadings cause ripples in the heat rate curves. To take this effect 
into account, sinusoidal functions are usually added to the quadratic cost functions as 
Eq. (3). Figure 1 depicts the effect of valve point loadings on the cost function 
characteristic: 

2 min( ) sin( ( ))i i i i i i i i i i iF P a P b P c e f P P= + + + −  (3) 
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Figure 1. Cost function characteristics with and without valve-points effect. 

 

2.2 Constraints: 
      ELD objective function is to be minimized subject to the following constraints: 
2.2.1 Real power operating limits: 
     Each unit has generation range, described as: 

min max 1,...,i i iP P P i N≤ ≤ =  (4) 

2.2.2 Real power balance constraint 

1

N

i D L
i

P P P
=

= +∑  (5) 

Where, the total transmission network losses, PL can be expressed using B-coefficients 
matrix as follows: 

0 00
1 1 1

N N N

loss i ij j i i
i j i

P P B P B P B
= = =

= + +∑∑ ∑  (6) 

Where B is loss coefficient matrix, B0i is linear term constant and B00 is transmission 
line system constant. 
2.2.3 Ramp rate limit constraints: 
      For each unit, output is limited by time dependent ramp rates at each hour and the 
generation may increase or decrease with corresponding upper and downward ramp rate 
limits as mentioned below: 

0

0

1,...,

1,...,
i i i

i i i

P P UR i N
P P DR i N

− ≤ =

− ≤ =
 (7) 

where iUR  is the ramp up limit of the ith  generator (MW/h) and iDR is the ramp down 
limit of the ith  generator (MW/h) and 0

iP is the previous output power of unit i . New 
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formulation of generator capacity limits is obtained when considering ramp rate limits 
and can be expressed as: 

min maxmax( , ) min( , )
, 1,...,

o o
i i i i i i i

i i

P P DR P P P UR
P AZ i N

− ≤ ≤ +
∈ =

 (8) 

2.2.4 Generators’ prohibited operating zones: 
      Prohibited zones divide the operating region into disjoint sub regions. The 
generation limits for units with prohibited zones are: 

min
,1

, 1 ,

max
,

2,3,..., , 1,...,

i

l
i i i

u l
i i m i i m i

u
i M i i

P P P
AZ P P P m M i N

P P P
−

 ≤ ≤
= ≤ ≤ = =
 ≤ ≤

 (9) 

Where ,
l

i mP and ,
u

i mP are the lower and upper limits of the Mth  POZ of unit i , 
respectively. iM  is the number of POZs of unit i . 

3. Hybrid PSOGSA 

3.1 Standard PSO 
      PSO is a robust optimization technique based on swarm intelligence, introduced by 
Kennedy and Eberhart in 1995[21, 22], which implements the simulation of social 
behavior. Where each member is seen as a particle and each particle is a potential 
solution to the problem. Each particle at iteration k with position vector 

1 2( , ,..., )k k k k
i i i iNx x x x= and velocity vector 1 2( , ,..., )k k k k

i i i iNv v v v= gives a solution. The best 
solution achieved by thi particle in iteration k  is defined as 

1 2
( , ,..., )

i i i iN

k k k k
best best best bestP P P P=  and the best 

i

k
bestP  among all particles is considered as

i

k
bestg . 

A particle approaches to better position with using its current velocity, previous 
experience, and the experience of other particles. In the modified PSO each particle also 
tries to get away from the worst position experienced by itself. So the whole 
formulations for updating velocity and position in each iteration is given below: 

1
1 1

2 2 3 3

( )

( ) ( )
in

in

k k n k k
in in best in

n k k n k k
best in in worst

v v C r P x

C r g x C r x P

ω+ = × + × × − +

× × − + × × −
 (10) 

1 1k k k
in in inx x v+ += +  (11) 

     Moreover, a new dynamic inertia weight was incorporated with PSO, which takes 
advantage of the self adaptation inertia weight idea. With dynamic acceleration and 
weight coefficients, great exploration and exploitation happen  in the first iterations of 
the algorithm, and the final iterations respectively, resulting better and faster solutions. 
The dynamic acceleration and weight coefficients consist of: 

max min
max k

k
ω ωω ω −

= − ×  (12) 
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1 1
1 1

2 2
2 2

3 3
3 3

f i
i

f i
i

f i
i

C CC C k
k

C CC C k
k

C CC C k
k

−
= + ×

−
= + ×

−
= + ×

 (13) 

Where 1 2 3, ,i i iC C C  are the initial and 1 2 3, ,f f fC C C  are the final values of dynamic 
acceleration factors. Also minω and maxω  are the initial and final inertia weights. 

3.2 Gravitational search algorithm 
     The Gravitational Search Algorithm[24] is a swarm-based and also an memory-less 
optimization algorithm based on the law of gravity. In GSA, agents are considered as 
objects and their performance which will be calculated by using a fitness function 
expressed by their masses.  In a system with N  masses the positions are defined as 
follow: 

1( ,..., ,..., )
1, 2,3,...

d n
i i i iX x x x

For i N
=

=
 (14) 

At the specific iteration (k), the force acting on thi  mass from thj  mass is defined as 
follow: 

( ) ( )
( ) ( ) ( ( ) ( ))

( )
pi ajd d d

ij j i
ij

M k M k
F k G t x k x k

R k ε
×

= −
+

 (15) 

Where iM  and jM  are the masses related to the thi  and thj  agent, respectively. ( )G k  is 
the gravitational constant at time/iteration (k), ε  is a small constant, and ( )ijR k is the 

Euclidian distance between thi and  thj agents.  The form of ( )G k  is as follows: 

0( )
ak
TG k G e

−

=  (16) 

Where t  and T  are current and total iterations of the algorithm, respectively. 0G  and α  
are GSA controlling constants. Total force that acts on the thi agent in thd dimension is 
calculated as follow: 

1

( ) ( )
N

d d
i j ij

i j i
F k rand F k

= ≠

= ∑  (17) 

Where, jrand is a random number in the interval [0, 1]. 
Variation in the velocity or acceleration of any mass is equal to the force acted on the 
system divided by mass of inertia: 

( )( )
( )

d
d i
i

i

F ka k
M k

=  (18) 
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( 1) ( ) ( )d d d
i i iV k rand v k a k+ = × +  (19) 

When acceleration and velocity of each mass are calculated, the new position of the 
masses could be considered as follow: 

( 1) ( ) ( 1)d d d
i i ix k x k v k+ = + +  (20) 

New positions mean new masses. The gravitational and inertial masses are updated by 
the following equations: 

( ) ( )( )
( ) ( )

i
i

fit k worst km k
best k worst k

−
=

−
 (21) 

1

( )( )
( )

i
i N

j
j

m kM k
m k

=

=

∑
 (22) 

Where ( )ifit k  represents the fitness value of the thi  agent at iteration k  and ( )worst k  
and ( )best k  are defined as follow For a minimization problem: 

{ }( ) min ( )ibest k fit k=  (23) 

{ }( ) max ( )iworst k fit k=  (24) 

3.3 Hybrid PSOGSA 
     The basic idea of PSOGSA is to combine the ability for social thinking (gbest) in 
PSO with the local search capability of Gravitational search algorithm(GSA)[25]. 
     In PSOGA, all agents are randomly initialized first. After initialization, the 
gravitational force, gravitational constant, and resultant forces among agents are 
calculated using (15), (16) and (17) respectively. Then the accelerations of particles are 
dened as (18). The best solution so far should be updated after each iteration. After 
calculating the accelerations and updating the best solution, the velocities of all agents 
can be calculated using the following equation: 

1
1 1

2 2 3 3

( )

( ) ( ) (25)
in

k k n d
in in i

n k k n k k
best in in worst

v v C r a t
C r g x C r x P

ω+ = × + × × +

× × − + × × −
 (25) 

Where, ( )d
ia k  is the acceleration of agent i  at iteration k . Finally the agent positions 

are updated using (11). 

4. Numerical results 

4.1 Case study 1:  
     A six unit system is has been used as the first case study. Transmission loss, ramp 
rate limits and generator prohibited zones are considered in this case study. Fuel cost 
and prohibited zone data were obtained from[7] and also are given in tables 1 and 2 
respectively: 
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Table1. Fuel cost data for case study 1 

Unit Pi
min (MW) Pi

max (MW) a ($/MW2) b ($/MW) c   ($) 
1 
2 
3 
4 
5 
6 

100 
50 
80 
50 
50 
50 

500 
200 
300 
150 
200 
120 

0.0070 
0.0095 
0.0090 
0.0090 
0.0080 
0.0075 

7.0 
10.0 
8.5 
11.0 
10.5 
12 

240 
200 
220 
200 
220 
190 

 
Table 2. Ramp rate limits and POZs for case study I 

Unit Pi
0 

(MW) 
URi 

 

(MW/h) 
DRi 

 

(MW/h) 
Prohibited 
Zone 1 

Prohibited 
Zone 2 

1 
2 
3 
4 
5 
6 

440 
170 
200 
150 
190 
150 

80 
50 
65 
50 
50 
50 

120 
90 
100 
90 
90 
90 

[210-240] 
[90-110] 
[150-170] 
[80-90] 
[90-110] 
[75-85] 

[350-380] 
[140-160] 
[210-240] 
[110-120] 
[140-150] 
[100-105] 

 
The B loss coefficient matrix is given below: 

[B]=0.001*

1.7 1.2 0.7 0.1 0.5 0.2

1.2 1.4 0.9 1.0 0.6 0.1

0.7 0.9 3.1 0.0 1.0 0.6

0.1 1.0 0.0 2.4 0.6 0.8

0.5 0.6 1.0 0.6 12.9 0.2

0.2 0.1 0.6 0.8 0.2 15.0

− − −

− −

− −

− − −

− − − − −

− − − − −

 
 
 
 
 
 
 
 
 

 

[B0]=0.001*[ ]0.3908 0.1297 0.7047 0.0591 0.2161 0.6635− − − [B00]=0.0056 
 
     The algorithm has been run for 10 times with the parameters set to: 30nPop = ,

20α = , 0 1G = , 50k = , 1 2.5iC = , 1 0.5fC = , 2 3 0.5i iC C= = , 2 3 2.5f fC C= = ,

max 0.9ω = , min 0.5ω = . The  initial values of acceleration and mass are also set to 0 for 
each particle. Table 3 shows the optimum results and also a comparison with other 
methods in literature. Figure2 also depicts the convergence characteristics for case study 
I. 

Table 3. Results comparison for case study I with 1263 MW total demand. 

Generator 
No 

1(MW) 2(MW) 3(MW) 4(MW) 5(MW) 6(MW) ∑Pi (MW) Ploss(MW) Ftotal ($/h) 

PSOGSA 
IPSO[26] 
GAAPI[20] 

440.57 
440.57 
447.12 

179.84 
179.83 
173.41 

261.38 
261.37 
264.11 

132.0 
131.91 
138.31 

171.0 
170.98 
166.02 

90.82 
90.82 
87.00 

1275.60 
1275.50 
1275.97 

12.72 
12.548 
12.98 

15444 
15444.1 
15449.7 

DE[27] 447.74 173.41 263.41 139.08 165.36 86.94 1275.95 12.96 15449.7 
GA[9] 474.80 178.63 262.20 134.28 151.90 74.18 1276.03 13.02 15459.0 
PSO[9] 447.49 173.32 263.47 139.05 165.47 87.12 1276.01 12.95 15450 
TSA[19] 449.36 182.25 254.29 143.45 161.96 86.01 1277.34 14.34 15451.63 
SA[7] 478.12 163.02 261.71 125.76 153.70 93.79 1276.13 13.13 15461.10 
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Figure 2. Convergence behavior of PSOGSA for a load demand of 1263 MW (Case study I). 

   
    It can be apparently seen that although the algorithm has been set to run for 50 iterations, 
but the convergence happened in about 20 ones. 

4.2 Case study II: 
     The second case study is a 40 unit system considering valve point loading effect. 
This system has more local minima than the previous one and takes the algorithm into 
the real challenge. The system data for this case study is taken from [28]. The algorithm 
has been run for 10 times with the parameters similar to the previous case study but 
with 60nPop =  and 200k =  Table 4 and 5 show the best results and also a comparison 
with other previously applied methods, respectively. Convergence characteristics is also 
given for case study II in Fig.3 : 
 

Table 5. Best results for case study II with total 10500 MW load demand 

Gen. No Best Gen. No Best 
1(MW) 
2(MW) 
3(MW) 
4(MW) 
5(MW) 
6(MW) 
7(MW) 
8(MW) 
9(MW) 
10(MW) 
11(MW) 
12(MW) 
13(MW) 
14(MW) 
15(MW) 
16(MW) 
17(MW) 

110.82 
110.82 
97.40 
179.73 
87.97 
139.99 
259.60 
284.61 
284.62 
130 
168.80 
94.06 
214.76 
394.24 
394.25 
304.53 
489.25 

22(MW) 
23(MW) 
24(MW) 
25(MW) 
26(MW) 
27(MW) 
28(MW) 
29(MW) 
30(MW) 
31(MW) 
32(MW) 
33(MW) 
34(MW) 
35(MW) 
36(MW) 
37(MW) 
38(MW) 

523.27 
523.28 
523.28 
523.28 
523.28 
10 
10 
10.05 
96.94 
190 
190 
190 
164.79 
200 
199.94 
199.95 
110 
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Gen. No Best Gen. No Best 
18(MW) 
19(MW) 
20(MW) 
21(MW) 

489.27 
511.27 
511.29 
523.27 

39(MW) 
40(MW) 
∑Pi (MW) 
Ftotal ($/h) 

109.99 
511.25 
10500 
121424.75 

 
Table 6. Results comparison for Test case II with 10500 MW total demand. 

Method Best cost ($/h) 
NAPSO[28] 
PSO[9] 
IABC[10] 
IABC-LS[10] 
DEC-SQP[12, 13] 
ST-HDE[14] 
HPSOM[15] 
SOHPSO[16] 
TM[29] 
ESO[11] 
Improved  GA[18] 
PSOGSA 

121491.0662 
124875.8523 
121491.2751 
121488.7636 
122174.16 
121,698.51 
122,112.40 
121,501.14 
122,477.78 
122,122.16 
121,915.93 
121424.75 

 

 
Fig. 3. Convergence behavior of PSOGSA for a load demand of 10500MW (Case study II). 

5. Discussion 

      Although PSOGSA results are close to other previously applied methods specially 
close to more recent applied ones, but the execution time is much lower than others. For 
example in test case I, for IABC-LS[10], cpu time value of 0.018 s have been reported 
for the load demand of 1263 MW, while these value for PSOGSA was about 0.01. 
However, unfortunately the execution time may not directly and exactly comparable 
among the methods due to various computers and programming languages used. 
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6. Conclusion 

     In this paper, a hybrid PSOGSA algorithm has been applied on ELD problem. For 
the PSO a more effective method has been used for the movement of particles, 
considering the worst solutions of every individual and also the global solution. Also 
the PSO factors have been exchanged with dynamic ones, which get a small change 
after each iteration. The hybridization of the modified PSO with GSA solved the slow 
speed of GSA algorithm on the final iterations, well.  Two case studies including a 6 
unit systems considering transmission loss, ramp rate limits and prohibited zones and 
also a 40 unit system with valve point loading and multiple local minima have been 
used to show the feasibility of the method. The results show fast convergence and better 
solutions compared to other methods in literature. 
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