Journal of Advances in Computer Research A
Quarterly ISSN: 2008-6148
Sari Branch, Islamic Azad University, Sari, |.R.Iran m

(Vol. 3, No. 4, November 2012), Pages: 67-75 TR
Www.jacr.iausari.ac.ir w

An Improvement in WRP Block Replacement Policy with
Reviewing and Solving its Problems

Davood Akbari Bengar '™ Hoshang Jazayeri Rad ?, Golnaz Berenjian®

(1) Department of Computer Sciences, Science aneBR#sBranch, Islamic Azad University, Khouzesteam |
(2) Department of Computer Sciences, Mahshahr Brailstamic Azad University, Mahshahr, Iran
(3)Tabari Institute of Higher Education

akbari.b1980@gmail.com; jazayerirad@put.ac.ir; gpberenjian@tabari.ac.ir

Received: 2012/11/14; Accepted: 2012/12/31

Abstract

One of the most important items for better filetexysperformance is efficient
buffering of disk blocks in main memory. Efficiéniffering helps to reduce the
widespeed gap between main memory and hard diskbid buffering system, the
block replacement policy is one of the most impurtdesign decisions that
determines which disk block should be replaced vtheruffer is full. To overcome
the problem of performance gap between hard disksraain memory, there have
been lots of proposed policies. Most of these @sliare the development of the
Least-Recently-Used (LRU) and Least-Frequently-Us¢dFU) models.
WRP(Weighting Replacement Policy) is a replacemalgorithm that its
performance is better than the LRU and LFU. Thetradsantage of this model is
it's similarity to both LRU and LFU, which meanshias the benefits of both. This
research proposes a new block replacement Poliopyatyy, DWRP (Developed
Weighting Replacement Policy) which solves the lprob of WRPalgorithm and
retains its advantages.

Keywords: Block replacement policy, System performance, Mamory, Buffering system, Speed
gap

1. Introduction

To overcome the speed gap between hard disks amdmemory, much research
has been performed on buffering disk blocks in nm@émory. Such a buffering system
is called a buffer cache and one of its most ingdrdesign decisions is the block
replacement policy that decides the block to béacsal when the buffer cache is full.

There is a terminology for cache efficiency nantétyt Rate” (Hit Rate expresses
the rapport between the number of addresses adcese cache and the total number
of addresses accessed during that time). The amtday “Hit Rate” is named “Miss
Rate” which can be ascertained by Miss Rate = lt-Rete formulas. Cache memory
uses uniformly sized items which are called padé® first access will be always a
Miss When the cache is empty. Until the cache lisdfiwith pages, the misses may
happen. After some cycles, when the cache is fitled kind of misses wills not happen
anymore. Another kind of miss happens when theemiaccess to a page that is not in
the cache and the cache is full of pages, in tiigtson replacement policy should
determine conditions under which a new page wiltdq@aced with an existing one. A

67

An Improvement in WRP Block Replacement ... D. Akbari Bengar; H. Jazayeri Rad; G. Berenjian

good block replacement policy must be easy to implet in hardware and must have
good performance with low overhead on the syste].[2n [10] proposed a
replacement algorithm that have low overhead orsyiséem and it is easy to implement
in hardware. This model is named Weighting ReplagdanPolicy (WRP) which is
based on ranking of the pages in the cache acaptdithree factors. Whenever a miss
occurs, a page with the lowest rank point is setbtd be substituted by the new desired
page. In WRP, if weighting value of a page be mtren its rank will be lower. First
factor namely lis the counter which shows the recency of block the buffer and
second factor namely; 5 the counter which shows the number of times hack i in
buffer has been referenced. Third factor is the tthfferenceATi = Tci - Tpi where Tci

is the time of last access and Tpi is the time efyttimate access. In this model, the
weighting value of block i compute by (1).

_ _Li
L= Fi*AT; (1)

WRP algorithm has two basic problems. First probtenthis algorithm is at above
function that has been explained with an examplppsse that there are two pages A
and B in cache memory and the value @fA, for page A is equal to the value/Es
for page B and this value correspond to Y. meareyAil o be equal to 2 andTg be
equal to 10. If a miss occurs in this conditionerththe page A is selected to be
substituted by the new desired page because tlghtiveg value of page A is more than
page B. but this selection is not true beca\iBg is less tham\Tg (ATa< ATg) and this
means that the time difference between two lastsscof page B is more than page A.
then the probability of referencing to page A isrenthan page B in future, there for the
page B must be selected for replacement and noflTAe. second problem of WRP
algorithm is that it considers only the time difece between two last accesses and
doesn’t consider the previous accesses. In thisarel, a new page replacement
algorithm namely DWRP has been proposed which sdlvese two problems and other
trivial problems.

2. Background

Most of replacement policies in use are based egquincy and recency properties,
but they fail in some applications. Other new pgelcmay work better, but most of
them are not easy to implement. For example, LRUcydhat is a recency-based
policy, fails badly for big loops. LFU policy thas a frequency-based policy, works
badly when various parts of memory have variousetivariant patterns. The LFU
policy has many problems: it needs logarithmic enpéntation complexity in cache
memory size, pays almost no attention to recenofyisand does not conform well to
altering access patterns since it collect stalepagth high frequency counts that may
no longer be helpful [10]. The method Clock withapdive Replacement (CAR) works
in much the same way as the Adaptive ReplacemecheC@ARC) explained below.
However, CAR avoids the last two LRU downfalls dR&. These downfalls are: 1) the
overhead of moving a page to the most recently pssdion on every page hit; and 2)
serialized, in the fact that when moving these pagethe most recently used position
the cache is locked so that it doesn’t change dutimis transition [6].In the Most
Frequently Used (MFU) algorithm [1], the blocks ttHeave been referenced more
frequently are the candidates for replacement. Wewesince it doesn’t consider the

68

Journal of Advances in Computer Research (VaN@&,4, November 2012) 67-75

recency factor, it cannot differentiate betweenckdothat were once hot but now
becoming cold and blocks that are currently hotfréquency density of a block is
high(the references to the block are dense), tloakhs said to be hot [1]. The memory
system consists of a hierarchy of caches. The pedoce of the entire memory
hierarchy will suffer, if each cache in the hietardecides which block to replace in an
independent way, particularly if inclusion is to bwintained [15]. In these cases a
global strategy usually has a limited performancéeptial. But an optimal global
strategy could help to improve the performanceirBglementing a global replacement
policy for all cache levels which includes botharecy and frequency features, the hit
ratio of each level will have a minimal influence the upper level [2, 8]. The LFU-K
(K = 1, 2 ...) algorithm increases servers' perforceanThis algorithm keeps the
number of times that a page has been referencedsmodiates a value with each block
which is based on a special function. This valuangies the priority of every block
and whenever a miss occurs, a block with the lowssgirity is selected to be
substituted by the new desired block [4].

The MF-LRU algorithm is a blend of two popular r@@ment policies namely the
LRU and MFU replacement policies. The MF-LRU asates a value with each block
called the Recency Frequency Factor (RFF), whichantifies the importance of that
block i.e. the likelihood that the block be refered in the near future. Thus the block
with the least RFF is the victim for replacement 21]. A replacement algorithm is
proposed in [10], which imposes low overhead onsiystem and is easy to implement
in hardware. This algorithm is named Weighting Repment Policy (WRP) which is
based on ranking of the pages in the cache. Whergewass occurs, a page with the
lowest rank point is selected to be substitutedH®y new desired page. In WRP, if
weighting value of a page is high, then its rank Wwe low. Algorithm like Taylor
Series Prediction (TSP) [11] is based on recenmgguency, size and cost. This
algorithm is suitable for web caching. Many replaeat policies have been proposed in
the last few years, like LRU-K (K =1, 2, ...) algdwin, the Greedy Dual size (GD-size)
policy and Greedy Dual Size Frequency (GDSF)rilgm, which is an enhancement
of the GD-size algorithm. Most of these cachingoathms like TSP are based on
recency, frequency, size and cost. Most of thensaitable for web caching. Although
the LRU replacement algorithm is the most populgothm but this algorithm isn't
the cheapest in terms of hardware cost [12]. Mdstthe work done in cache
replacement algorithm is local. Some of the prodaalgorithms accommodate to the
application behavior, but within a single cacher Eaample, Qureshi et.al suggest
retaining some fraction of the working set in tleclee so that some fraction of the
working set cooperate to the cache hits [13].Canlsses are not of equal importance,
and it depends on the amount of memory level peisth (MLP) [14]. An MLP-aware
cache replacement is presented in [19].

3. Motivation

A well-known performance enhancement techniqueithased in computer systems
is Caching. Paged virtual memory, web caching anocd3sor's cache are some
examples of using this technique. Performance ef slgstem depends on cache
mechanism. The time access for main memory isaat [EO times larger than the cache.
Increasing the size of cache results in highergoerance, but it has a very expensive
technology. That's why the cache size is always llem@han the main memory.

69

An Improvement in WRP Block Replacement ... D. Akbari Bengar; H. Jazayeri Rad; G. Berenjian

According to access time of the cache memory, fietcdata from cache memory has
an important role in system performance. Othernegles should be used until make
cache more efficient for systems and the blockamghent policy is an important
technique for doing this task. Most of policies dhe development of the Least-
Recently-Used (LRU) and Least-Frequently-Used (LFupdels such as WRP

(Weighting Replacement Policy).WRP is a replacenpaiicy that its performance is

better than the LRU and LFU but it has some probleim this research, a new page
replacement policy namely DWRP has been proposadhwdolves the problems of

WRP.

4. DWRP Replacement Algorithm

In this section, the proposed replacement algoritfas been explained. The size of
the blocks has been assumed that is equal andefii@cement algorithm is used to
manage a memory that holds a finite humber of theseks. A hit will occur when
there is a reference to a block in the buffer. Waeeference to a block not in the buffer
is done, a miss will occur and referenced blocktrbesadded to buffer. When buffer is
full and a miss occurs, an exciting block must teted to make room for a new one.
The proposed replacement algorithm is a powerfal that can increases the system
performance with considering three parameters wgdrequency and reference rate of
every block. In fact, it performs both LRU and LREl§orithms and gives a weight to
each block according to three said parameterst pamsameter namely RB the
counter which shows the recency of block i in téfdr and second parameter namely
FB; is the counter which shows the number of times$ bhack i in buffer has been
referenced . Third parameter naméjy(i) is the average of time distances for block i
from begin to tk time (a time distance namaly is the time difference between two
sequential access of a block). If block i referehe¢ time tk then third parameter
computes for block i by (2).

St(k—1) (D +AT 4

o (i) = T 2)

Now suppose that block i referenced at times t@zland t3 (Fig. 1) andy(i) be
equal to 1 theds(i) computes by (3), (4), (5).

AT, AT, AT,

Time

t0 t1 t2 t3

Figure 1. Referenceto block i at timestO, t1, t2 and t3

8oy (1) = 2 (3)
, 31 (D+ATy

Bz (i) = T (4)

B (i) = 22T (5)

70

Journal of Advances in Computer Research (VaN@&,4, November 2012) 67-75

Based on three said parameters, the weighting \dlbick i at time tk compute by
(6).

WB; = 2t uc(D) (6)

RB; will work like LRU counter, when the new blocks placed in the buffer then all
of the parameters in weighting function must be aed it will be followed by setting
RBito 1, FBto 1 anddo(i) to 1. FB has been set to 1 because it means that the iblock
has been used once adg(i) has been assumed that be equal to 1 becaudintbe
between each reference to a block would be at tastn its minimum case. In every
access to buffer at time tk, if referenced blotkip the buffer then a hit is occurred and
the proposed algorithm will work in this way:

1) RBi=RBi+1 « foreveryi#j

2)0:k(j) = w , FBj=FBj+1and RBj=1

In accessing to buffer at time tk if referencedcklg is not in the buffer a miss
occurs and the algorithm will choose the block wmffér which the value of its
weighting function is greater than the others. 8wsag for block with greatest
weighting value will be started in the buffer frdop to down. In this way, if values of
some blocks are equal to each other, the block hwiias been referenced less
frequently will be chosen to evict from buffer. fteans that the proposed algorithm
follows LFU low in its nature. Let assume that ssnihas been occurred and block t has
the greatest weighting value and it must be evidtedch buffer, thus the proposed
algorithm will work in this way:

1) RBi= RBi+1 « foreveryi#]j
2) FBt = 1

3) FBj=FBj+1 « 8y (j) =

Ot(k—1)(G)+RB;
%and RB; =1

The weighting value of blocks that are in buffell wpdate in every access to cache.
As in simulation section has been shown, the pregh@dgorithm will work better than
WRP, LRU, LFU and FIFO with different cache siz@se of the important concepts in
replacement algorithms is its overhead in the systeThe proposed algorithm needs
three counter to work and will add space overheaslystem: first, algorithm needs a
space for counter RBsecond, it needs a space for counter &®l third it needs a
counter fordy(i). The last and maximum space that it needssigaze for WB which is
as weighing value for each block in the buffer.dDkdting weighting function value for
each block after every access to cache will caus@eoverhead to system. Although
the WB is considered as an integer number to decreagsartbend memory overheads.

5. Simulation

To evaluate the proposed algorithm experiment#tily,proposed algorithm has been
simulated in C programming language and has beewpaed with other algorithms
like WRP, LRU, LFU and FIFO. The simulator prograras designed to run thousands

71

An Improvement in WRP Block Replacement ... D. Akbari Bengar; H. Jazayeri Rad; G. Berenjian

trace of memory addresses by proposed algorithm fand said algorithms. The
obtained hit ratio depends on the replacement ititgey cache size and the locality of
reference for cache requests. An address tradem@ysa list of one hundred numbers
between O and 10 that generate randomly by a progha fact, every of these 11
numbers are explanatory of one memory address.

5.1 Simulation Results

The simulation program has been executed twicevdtid 4 different cache sizes
until evaluates the performance of the proposedrilhgn. At first time, 1000 different
address traces have been considered as input sintlidation program. The simulator
acquires the hit ratio for each of 1000 tracestard computes the average of hit ratios.
The average of hit ratios for each of cache siassldeen compared with WRP, LRU,
LFU and FIFO. As it is indicated in Fig. 2, if 10@@ferent address traces are executed
by simulation program (NT=1000) then on the averatje proposed weighting
replacement algorithm works about 0.4% better &P and about 0.22% Better than
LRU. In Fig. 2, the proposed algorithm has beenmamed with WRP, LRU, LFU and
FIFO by thousands address traces. The simulatopetad the accurate WHBor each
reference, but for implementing there is no neadgda use float value and it can be
simplified to an integer number. At second times fimulator received 2000 different
address traces as input and then computed thegavefadnit ratios. As it is indicated in
Fig. 3, the maximum average of hit ratios for DWRF68.315%, and is about 0.13%
more than WRP and about 0.14% better than FIF@hdrworst case the result is equal
to the maximum average of hit ratios of WRP, LRBULand FIFO. Fig. 3 shows the
comparison and the results for 2000 address trates figure shows that the proposed
algorithm is always better than four other algangh

Table 1. A Comparison between hit ratio of DWRP, WRP, LRU, LFU and FIFO for 4 different cache
sizes (NT=1000). I n this case, an enhancement compareto WRP, LRU, LFU and FIFO for DWRP in
all cache sizesis seen

Cache Size (# of Blocks) DWRP % WRP % LRU% LFU% FIFO %

2 17.944 17.765 17.894 17913 17.831
4 35.514 35.161 35.276 35.37 35.385
6 52.57 52.042 52.212 52.327 52.324
8 68.68 68.418 68.47 68.334 68.456

72

Journal of Advances in Computer Research

(VaN@&,4, November 2012) 67-75

Hit ratio %

70

60

50

40

30

20

10

| I

HDWRP %

u WRP %

® LRU %
LFU %
FIFO %

2

NT=1000 I
4 6 8

Cache Size (# of Blocks)

Figure 2.Performance of DWRP, WRP, LRU, LFU and FIFO with different cache sizes for NT=1000.
DWRP performs better than other algorithms

Table 2.A Comparison between hit ratio of DWRP, WRP, LRU, LFU and FIFO for 4 different cache
sizes (NT=2000). I n this case, an enhancement compareto WRP, LRU, LFU and FIFO for DWRP in
all cache sizesis seen

Cache Size (# of Blocks) DWRP% WRP% LRU% LFU% FIFO %

2 17.8905 17.878 17.8875 17.826 17.8725
4 35.3185 35.2615 35.297 35.2275 35.2425
6 52.2440 52.011 52.1595 52.172 51.979
8 68.315 68.1225 68.221 68.2775 68.132
70 -~
® DWRP%
60 1 m WRP% NT=2000
® LRU %
50 | mLlFU%
® :
° FIFO %
® 40 -
%
30 A
20 A
2 4 6 8
Cache Size (# of Blocks)

Figure 3.Performance of DWRP, WRP, LRU, LFU and FIFO with different cache sizes for NT=2000.
DWRP performs better than other algorithms

73

An Improvement in WRP Block Replacement ... D. Akbari Bengar; H. Jazayeri Rad; G. Berenjian

6. Conclusion

In this article, a new caching replacement algarithas been proposed that is the
improvement of the WRP algorithm. The WRP algorithas two basic problems. The
first problem of this algorithm happens when theute of division of two factors
(recency and frequency) for one block is equalnotier block. The second problem is
that it considers the only time distance betweea last access foAT; and doesn't
consider the previous accesses. In this articl@roposing a new function, removed
this two problems and the other little problemse TWRP has been simulated with
two traces and has been compared with WRP, LRU, &Rt FIFO. Simulation shows
that this new algorithm works better than four alfpons WRP, LRU, LFU and FIFO.
Considering the additional parameters and factdmgtwdescribe features of objects in
the buffer would help to improvement of proposegbathm, for instance, considering
the cost and size of each object in the cache whihtmake DWRP suitable for
applications like web caching.

7. References

[1] Sabarinathan Sayiraman, Senthil Kumar Dayalan, i@bgavel Mani Subbiah, "A Framework for
MF-LRU Replacement Policy”, School of Computer &cie and Engineering ,College of
Engineering Guindy, Anna University ,Chennai, India02.

[2] Richa Gupta, SanjivTokekar,” A Novel Pair of Reglarent Algorithms onL1 and L2 Cache for
FFT",Richa Gupta et al / International Journal conputer Science and Engineering Vol.2(1),
2010, pp.92-97.

[3] Seon-yeong Park ,Dawoon Jung ,Jeong-uk Kang ,&inksm, and Joonwon Lee,” CFLRU: A
Replacement Algorithm for Flash Memory", CASES Pxceedings of the 2006 international
conference on Compilers, architecture and syntiessmbedded systems, January 31, 2006 .

[4] Vladimir V. Prischepa,” An Efficient Web Caching grithm based on LFU-K replacement
policy", Proceedings of the Spring Young Researsh&olloquium on Database and
Information Systems SYRCoDIS, St.-Petersburg, Ryg004.

[5] Sangyeun Cho , Lory Al Moakar ," Augmented Fifo Badeplacement Policies for Low-Power
Embedded Processors”, Journal of Circuits, Systemd, Computers Vol. 18, No. 6 (2009),
pp.1081-1092.

[6] Sorav Bansal and Dharmendra S. Modha," CAR: Cloitk wdaptive Replacement ", FAST '04
Proceedings of the 3rd USENIX Conference on Filel &torage Technologies, USENIX
Association Berkeley, CA, USA©2004.

[71 N. Megiddo and D. S. Modha, "ARC: A Self-Tunningyv. Overhead Replacement Cache" ,Proc.
Usenix Conf. File and Storage Technologies (FAST30Usenix, 2003, pp.115-130.

[8] Richa Gupta ,Sanjiv Tokekar ," Proficient Pair afgfacement Algorithms on L1 and L2 Cache for
Merge Sort, "Journal of Computing , Volume 2, Is8udarch 2010, Issn 2151-9617.

[9] Qingbo Zhu, Asim Shankar and Yuanyuan Zhou," PB-t&RSelfTuning Power Aware Storage
Cache Replacement Algorithm for Conserving Disk gy Department of Computer Science
University of Illinois at Urbana Champaign Urbalta,61801, ICS’04, June 26—July 1, 2004,
Malo, France.

[10] Kaveh Samiee, "A Replacement Algorithm Based ondMailg and Ranking Cache Objects",
International Journal of Hybrid Information Techagy Vol.2, No.2, April, 2009.

[11] Q. Yang, H. H. Zhang and H. Zhang, " Taylor Seigsdiction: A Cache Replacement Policy
Based on Second-Order Trend Analysis," Proc. 34tivadii Conf. System Science, 2001.

[12] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, "Péormance evaluation of cache replacement
policies for the spec cpu2000 benchmark suite "Piiac. 42nd ACM Southeast Conference,
2004.

[13] M. Qureshi, A. Jaleel, Y. Patt, S. S. Jr., and theE "Adaptive insertion policies for high
performance caching", in Proc. 34th Int'l SymposiamComputer Architecture, 2007.

74

Journal of Advances in Computer Research (VaN@&,4, November 2012) 67-75

[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

T. Puzak, A. Hartstein, P. Emma, and V. Srinivaséfteasuring the cost of a cache miss", in
Workshop on Modeling, Benchmarking and SimulatidoBS), 2006.

Mohamed Zahran. " Cache Replacement Policy Redlisita Proceedings of the 6th Workshop on
Duplicating Decon-structing, and Debugging, SangDieCA, USA, June 2007.

S. Jihang and X. Zhang, "LIRS: An Efficient Low éntReference Recency Set Replacement Policy
to Improve Buffer Cache Performance,” Proc. ACMnSigrics Conf., ACM Pres, pp. 31-42,
2002.

Jianliang Xu, Qinglong Hu, Wang-Chien Lee and DikLuee, "Performance Evaluation of an
Optimal Cache Replacement Policy for Wireless Datasemination "leee transactions on
knowledge and data engineering, vol. 16, No. 1,dgn2004.

Jaeheon Jeong and Michel Dubois, "Cost-Sensitiveh€aReplacement Algorithms", High-
Performance Computer Architecture, 2003. HPCA-93200

M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt, "A eafor mlp-aware cache replacement”, in Proc.
33rd Int'l Symposium on Computer Architecture, 2006

Debabala Swain, Bijay Paikaray and Debabrata SWAM/RP: Adaptive Weight Ranking Policy
for Improving Cache Performance". Journal Of CormgytVolume 3, Issue 2, February 2011,
ISSN 2151-9617.

Mingwei Lin, Shuyu Chen and Guiping Wang, " Grequhge replacement algorithm for flash-
aware swap system", IEEETransactions@mnsumer Electronics, Volume 58, Issue 2, May
2012, pp. 435-440.

75

76

