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Abstract 
The aim of this study is to show that the measures derived from 

Electrocardiogram (ECG) signals many a time perform better than the same 
measures obtained from heart rate (HR) signals. A comparison was made to 
investigate how far the nonlinear symbolic dynamics approach helps to characterize 
the nonlinear properties of ECG signals and HR signals, and thereby discriminate 
between normal and congestive heart failure (CHF) subjects. The symbolic 
dynamics calculations performed on normal and CHF ECG and HR signals showed 
significant differences in the symbol-sequence histogram statistics and complexity 
measures (modified Shannon entropy (MSE) and multi-valued Lempel-Ziv 
complexity (MLZC)) of symbol sequences between the two groups. The ability of 
these complexity measures to discriminate normal from CHF subjects was evaluated 
using receiver operating characteristic (ROC) plots. It is found that MSE and MLZC 
measures obtained from ECG signals performed better than the same measures 
derived from HR signals of the same subjects. 
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1. Introduction 

Despite numerous recent advances in the understanding of the pathophysiology of 
congestive heart failure (CHF) and improvements in its therapy, the mortality rate has 
remained high [1]. As a consequence the development of new methods and measures of 
mortality risk in CHF, including sudden cardiac death, is still a major challenge in 
contemporary cardiology. Besides this, there is a need to reach remote and underserved 
communities with life saving healthcare. A reliable automated diagnostic system 
combined with high-speed communication can resolve this issue. This work is an 
attempt to develop such an automated system to discriminate between normal and 
congestive heart failure subjects. 

The rest of this paper is organized as follows. In Section 2, the related works are 
discussed. In Section 3, motivation of doing this work and in Section 4, the data used 
and the proposed framework are explained. In Section 5, the measures of complexity are 
presented. In Section 6, the results of the application of the new method are discussed. 
Finally, some concluding remarks are mentioned in Section 7.  
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2. Related Work 

Cardiovascular system is characterized by a high complexity, partly because of its 
continuous interactions with other physiological systems [2]-[3]. Further, it has been 
found that this complexity breakdowns with cardiac diseases and also, aging [4]. 
Cardiac diseases often manifest themselves in characteristic changes in the ECG as well 
as HR signals. As an implication the complex dynamics hidden in the generation of 
ECG/heart beats cannot be quantified or characterized using traditional methods of data 
analysis in time and frequency domains [5]. The classical nonlinear methods suffer from 
the disadvantage of dimensionality [6]-[7]. Further, there are not enough samples in the 
time series to arrive at a reasonable estimate of the nonlinear measures [8]. From this 
point of view it is advisable to resort to methods which can quantify system dynamics 
even for short time series, like the symbolic dynamics. 

For the past few decades, the application of symbolic analysis has found several 
diverse fields like, astrophysics, geomagnetism, geophysics, classical mechanics, 
chemistry, medicine and biology, mechanical systems, fluid flow, plasma physics, 
robotics, communication, and linguistics [9]. To be specific, in medicine, various 
implementations of symbolic sequences have been used to characterize 
electroencephalography (EEG) signals to understand the interaction between brain 
structures during seizures [10]. Under mechanical systems, symbolic methods were 
applied to combustion data from internal combustion engines to study the onset of 
combustion instabilities [11] and in multiphase flow data-symbolization were found to 
be useful in characterizing and monitoring fluidized-bed measurement signals [12]. 
Symbolic dynamics, as an approach to investigate complex systems, has found profound 
use in the analysis of HR signals [13]-[17]. Kurths et al. [13] concluded that the 
traditional methods of data analysis in time and frequency domains were insufficient to 
characterize the HRV. They applied methods of nonlinear dynamics based on symbolic 
dynamics to analyze the HRV time series. They found that the renormalized entropy 
together with the parameters in the frequency domain were promising in quantifying 
individual risk. Porta et al. [14] applied symbolic dynamics to beat-to-beat HRV series 
from 24h Holter recordings. Using a uniform quantization procedure the HRV series 
was transformed into a sequence of six symbols and the symbols were grouped in 
patterns to characterize physiological conditions. The indexes derived from symbolic 
dynamics were found to be capable of discriminating pathological from healthy 
populations. Changes in autonomic modulation during the progression of CHF in rat 
model were assessed by Tobaldini et al. using spectral and symbolic analyses. Their 
study revealed that the symbolic analysis was found to be more suitable than spectral 
analysis to describe the alterations of heart rate dynamics [15]. The efficacy of the 
measures of complexity based on symbolic dynamics has been confirmed in the 
assessment of risk of patients after myocardial infarction and the architecture of human 
cancellous bones [16]. Voss et al. employ symbolic dynamics to investigate the 
complexity of the dynamical aspects of the HRV series [17]. By comparison with other 
nonlinear methods they conclude that symbolic dynamics has a close connection to 
physiological aspects and that it relatively easy to interpret. They found that symbolic 
analysis can separate structures of nonlinear dynamics in the HRV series more 
successfully than the conventional methods in time and frequency domains. In all the 
above studies and many more, the thrust has been on HRV time series. Although 
Shannon entropy and Lempel-Ziv complexity measure have been widely used in the 
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literature, not much research is found in the context of CHF. Based on symbolic 
representations and their probability distributions, Parlitz et al. used different 
biomarkers, including Shannon entropy, to distinguish CHF patients from control group 
[18]. With Shannon entropy as the biomarker the correct classification was at 80%. 
Voss et al. proposed a novel method using compression entropy, a complexity measure 
based on Lempel-Ziv algorithm, for the analysis of heart rate dynamics in CHF patients 
[19]. They found compression entropy to be useful to detect differences in heart rate 
dynamics before the onset of ventricular tachyarrhythmia. 

3. Motivation 

The prime advantages of symbolic dynamics are the following: If the fluctuations of 
the two data series are governed by different dynamics then the evolution of the 
symbolic sequences is not related. The resulting symbolic sequences histograms give a 
reconstruction of their respective histories and provide a visual representation of the 
dynamic patterns. In addition, they may be used as a basis to build statistics to compare 
the regions that show different dynamical properties and indicate which patterns are 
predominant. Moreover, symbolization has been successfully applied to a number of 
noisy nonlinear processes [20]. Thus methods of symbolic dynamics are useful 
approaches for classifying the underlying dynamics of a time series. Parameters of time 
domain and frequency domain often leave these dynamics out of consideration. Fruitful 
applications of symbolic methods are preferred in situations where robustness to noise, 
speed, and/or cost is important [9]. The process of symbolization can be used to 
represent any possible variation over time, depending on the number of symbols and the 
sequence lengths used. This is a very powerful property because it does not make any 
assumptions about the nature of the signals/patterns (e.g., it works equally well for both 
linear and nonlinear phenomena). 

However, there is hardly any literature where symbolic dynamics is applied for the 
analysis of raw ECG signals. The disadvantages of most of the methods used for the 
analysis of HR signal are (1) misrecognitions of RR intervals of lengths zero, RR 
intervals less than 200 ms (human refractory time) and pauses, i.e. the interval when 
heart does not pump; (2) removal of artefacts (e.g. double recognition, i.e. R-peak and 
T-wave recognized as two beats); and (3) the required corrections for ectopic beats. 
These difficulties make the analysis complicated and time-consuming. Further, some of 
the pathologies such as the left bundle branch block and the right bundle branch block 
cannot be detected using only the heart rate variability features [21]. On the other hand, 
ECG signal is more susceptible to noise than HR signal. However, symbolic dynamics 
takes care of this noise as mentioned above. In this contribution symbolic dynamics is 
employed to classify (or: distinguish between) both the ECG and HR signals obtained 
from standard Holter recordings from MIT-BIH database into normal and CHF subjects 
using modified Shannon entropy (MSE) and multi-valued Lempel-Ziv complexity 
(MLZC) as complexity measures. Receiver operating characteristic (ROC) plots were 
used to evaluate the ability of these complexity measures to discriminate normal from 
CHF subjects. 
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4. The Proposed Framework and materials 

First the ECG and the corresponding HR data used are discussed followed by the 
symbolic dynamics of the time series. 

a. Analyzed data 

In this work two data sets of signals from the benchmark PhysioNet database [22] are 
used. The first data set includes 18 ECG records from MIT-BIH normal sinus rhythm 
(NSR) database (nsrdb) and ECG records of 15 subjects with severe CHF (NYHA class 
3-4) from BIDMC CHF database (chfdb). The NSR database includes long term ECG 
recordings of 5 men, aged 26 to 45 years, and 13 women, aged 20 to 50 years. The CHF 
database includes long term ECGs (about 20 hours each) of 11 men, aged 22 to 71 
years, and 4 women, aged 54 to 63 years. From each record the modified limb lead II 
was only considered for analysis. The resolution is 200 samples per mV. The sampling 
frequency of normal sinus rhythm signal is 128 Hz and that of CHF signal is 250 Hz. 
Since the sampling frequency does influence upon the calculated parameters it is 
necessary to have the same sampling frequency for all the records. For this reason ECG 
signals from normal database are first re-sampled at 250 Hz. Then each record is 
divided into segments of equal time duration (20 sec), with 5000 samples/segment in 
both normal sinus rhythm and CHF database. A total of 3510 segments from NSR and a 
total of 2925 segments from CHF data bases are analyzed. It is to be noted that the 
above re-sampling will have no effect on the timing of R-peaks and the derived RR 
interval signals. 

The second data set includes HR/RR interval signals of the same NSR and CHF 
subjects as in data set one. All the normal and CHF HR records are passed through a 
square filter to eliminate artifacts, premature beats and outliers, if any. Each record was 
then divided into segments, with 5500 samples/segment, in both the groups. 

b. Symbolic dynamics analysis 

First the two common types of symbolic transformations are dealt with and then their 
advantages and implications. Then the specific transformation as applied to ECG and 
HR time series are discussed. Next, the construction of symbol sequences, plotting 
symbol-sequence histograms, applying symbol-sequence statistics and finally employ 
measures of complexity to decide on the nature of time series are presented. 

c. Static and Dynamic transformations 

Symbolic  dynamics/time series analysis or symbolization,  as  an approach  to  
investigate  complex  dynamical processes,  facilitates  the analysis  of  dynamic  
aspects of  the  signal of interest.  The concept of symbolic dynamic analysis is based on 
coarse-graining of the dynamics of the time series [17].  That is the range of original 
observations or the range of some transform of the original observations such as the first 
difference between the consecutive values, is partitioned into a finite number of discrete 
regions, n, and each region is associated with a specific symbolic value so that each 
observation or the difference between successive values is uniquely mapped to a 
particular symbol depending on the region into which it falls. The former mapping is 
called static transformation and the latter dynamic transformation. Static transformation 
with more number of partitions is preferred where one is concerned about observing 
details which are small compared to the overall range. On the other hand dynamic 
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transformation is preferred when the observed process appears nonstationary or has long 
time scale variations. Thus the original observations are transformed into a series of 
same length but the elements are only a few different symbols (letters from the same 
alphabet), the transformation being termed symbolization. A good criterion to 
symbolize the data is to define the partitions such that (1) the individual occurrence of 
each symbol is equiprobable with all other symbols or (2) the measurement range 
covered by each region is equal. This is done to bring out ready differences between 
stochastic and deterministic structure in the data. The transformations into symbols have 
to be chosen context dependent [23]. This way the study of dynamics simplifies to the 
description of symbol sequences. Some  detailed  information  is  lost  in  the  process  
but  the coarse and robust properties of the dynamic  behavior  is preserved and can  be  
analyzed  [23]. 

d. Symbolic Dynamics and ECG and HR time series 

In this study, static transformation approach for the symbolic dynamics [12] is 
employed. In the literature a symbolic dynamic representation using two symbols with 
one quantization level or four symbols with three non-uniform quantization levels, as 
applied to HR time series is common [24]. Sometimes the thresholds used in these 
quantization approaches are related to mean or median of the time series. But in the 
non-stationary signals the mean or the median change abruptly [25]. This problem can 
be remedied by using static transformation with uniform quantization levels. This also 
fulfills the requirement of a MLZC which demands uniform quantization. In this study 
six symbols (n=6) with five uniform quantization levels as shown in the eqn. (1) below 
are used. 
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where, xmin and xmax are respectively, minimum and maximum values of the time series 
xi. The distance, d, between partitions is given by d = (xmax - xmin)/n.      

After symbolization the next step in the identification of characteristic temporal 
patterns is the construction of symbol sequences of specific length L, termed words, 
from the symbol series by gathering groups of symbols in the temporal order. L is called 
the word length. This sequencing process involves definition of a template of finite 
length L that can be moved along the symbol series one symbol at a time, each step 
revealing a new sequence/word. If each possible new sequence is identified by a unique 
identifier the resulting series will be a new time series, termed word-sequence series. 
The next step is to evaluate the relative frequency of occurrence of all possible words. A 
simple way to keep track word-sequence frequencies is to assign a unique value, called 
symbolic code, to each word by computing the corresponding base-10 value for each 
base-n word, where, n is the number of partitions. For example, with number of 
partitions n=2, and word length L=3, a sequence ‘101’ will have a sequence code of 5. 
The next step is to plot symbol-sequence frequencies as a function of symbolic code, the 
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plot being termed symbol-sequence histogram. Because of the above rule of thumb for 
partitioning, for a truly random data the relative frequency of all possible symbolic 
codes will be equal. This implies that any significant deviation from this equiprobable 
feature is an indication of deterministic characteristic of the given data, the more the 
deviation the more is the data deterministic and time correlated. 

e. Determining Optimum Symbol-sequence Length 

One approach that is useful for selecting an appropriate sequence/word length 
involves employing MSE explained in Section 5 below. It is empirically found that this 
value decreases, reaches a minimum and then increases, as sequence length is increased 
from 1. This sequence length corresponding to minimum reflects the symbol sequence 
transformation that best distinguishes the data from a random sequence [11]. Sequences 
that are too short lose some deterministic information while those that are too long 
reflect noise and deplete data for reliable statistics. Thus the sequence length L, for 
which MSE is minimum corresponds to almost an optimal length. In this study, 
empirically it is observed that word lengths of three (L=3) is a suitable choice for both 
the normal and CHF groups as explained in Section 6 below. There are several 
quantities (statistics and complexity measures) that properly characterize such symbol 
strings. In this work Euclidean norm (T statistic) and a modified χ2 statistic are used to 
compare the histograms. In particular, the frequency distribution (relative frequencies) 
of six symbol and length 3 words, i.e. substrings which consist of three adjacent 
symbols from the alphabet {0, 1, 2, 3, 4, 5} leading to a maximum of 126 (63) different 
words/bins are investigated. The symbol-sequence histogram for each case is plotted 
and then the pattern classification is performed. This is a compromise between retaining 
important dynamical information and of having a robust statistics to estimate probability 
distribution. 

f. Symbol-sequence Statistics 

In addition to providing a visual representation of the dynamic patterns, symbol-
sequence histograms provide the basis for quantitative statistics. As mentioned above 
Euclidean norm (T statistic) and a modified χ2 statistic are employed to compare the 
histograms. The Euclidean norm is defined as [12] 

��� =	�∑ (	
 − �
)�
		  (2) 

and the modified χ2 statistic is defined as [13] 

���� =∑ (�����)�

(�����)

      (3) 

where Ai and Bi are the individual sequence probabilities for sequence i  for histograms 
A and B. It is seen that both the statistics are obtained by differencing the frequencies of 
the individual sequences for the different histograms. When the frequency differences 
are large, the resulting statistics will also be large. Thus, large values for the statistics 
imply that the dynamic patterns in the data set are completely different. The Euclidean 
norm is based on the idea that each symbol histogram can be considered as a vector in 
multi-dimensional space, where the number of dimensions corresponds to the possible 
unique sequences. Consequently, the magnitude of the vector difference between the 
histograms must provide a good comparison of the histograms. A larger distance 
between histograms implies that the dynamics in the data set are very different. The 
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modified χ2 statistic has been derived from the standard χ
2 statistic with the univariate 

frequencies replaced by sequence frequencies. 

g. Time-irreversibility 

Time reversibility of a time series refers to the invariance of the statistical properties 
under time reversed conditions. It is important to note that data nonstationarity will 
result in time irreversibility [26]-[28]. It is shown that the time irreversibility, although 
not an absolute test for nonstationarity, the degree of time reversibility can serve as a 
good indicator of nonstationarity [27]. The level of time irreversibility is used as an 
indicator to classify the ECG records. Symbol-sequence histograms are useful for 
quantifying the time irreversibility because the relative frequencies will shift when the 
data are observed backwards in time. Both T statistic and modified χ2 statistic can be 
used to characterize time irreversibility in a given time series by observing the 
difference in symbol sequence histograms for the forward-time and reverse-time 
realizations using the same Equation (2) and (3) with A and B representing histogram 
frequencies of forward and reverse time analyses, respectively. The statistics (T statistic 
and a modified χ2 statistic) quantify the level of time-irreversibility. 

5. Measures of Complexity 

The first measure of complexity is the MSE given below [11]. A larger value 
implies higher complexity and a smaller value implies a lower complexity. The MSE 
(MSE) defined as  

�� =	 �
�������

	∑ �

 � ! �
 (4) 

where pi is the normalized probability of the i th symbol sequence, and Nobs is the number 
of possible sequences which are actually observed in the data. Note that the 
normalization is with respect to Shannon entropy for a completely random process (one 
in which all sequences are equiprobable). The advantage of this normalization is to 
bring down the bias on the statistics due to finite size of the data sets. This implies that 
the MSE will converge to 1 as the data approaches true randomness and for non-random 
data this value will be 0 ≤ Hs ≤ 1.0 and a lower Hs implies more deterministic structure. 

The second measure of complexity is the MLZC. The LZC algorithm was proposed 
by Lempel and Ziv to evaluate the randomness of finite sequences. It is rather a simple-
to-compute nonparametric measure of complexity suitable for finite length one-
dimensional signals related to the number of distinct substrings and the rate of their 
recurrence. Larger values of LZC imply higher complexity data. Since LZC analyzes 
finite symbol-sequences it is essential that the given signal must first be coarse-grained. 
As the symbol sequence using binary coarse-graining method is likely to lose some 
important information of the dynamical system, in this study, a multi-valued coarse-
graining method (with six symbols, n=6 as given in Equation (1) above) is used. This 
symbolic string is scanned from left to right and a complexity counter c(N)  is 
incremented by one unit every time a new subsequence pattern is encountered in the 
scanning process, and the immediate next symbol is regarded as the beginning of the 
next subsequence pattern. The LZC can be estimated using the following algorithm 
[26]. 

1. Let P denote the original string sequence i.e. P= {s1, s2, s3,,…}, with si defined as in 
Equation (1). Let S and Q denote two subsequences of P and SQ be concatenation of S 
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and Q. Also, let SQπ be a sequence derived from SQ after its last character is deleted (π 
implying deletion of last character in the sequence) and υ(SQπ) denote the vocabulary of 
all different subsequences of SQπ.  

2. At the beginning, the complexity counter c(N)=1, S=s1, Q=s2,  SQ=s1,s2, and 
therefore, SQπ=s1. 

3. In general, with S=s1, s2, s3,…,sr   and Q=sr+1, SQπ= s1, s2, s3,…,sr. If Q belongs 
to υ(SQπ) then Q is subsequence of SQπ and not a new sequence. 

4. With S intact, change Q to sr+1, sr+2 and check if Q belongs to υ(SQπ) or not. 
5. Keep repeating previous steps until Q does not belong to υ(SQπ). Now Q=sr+1, 

sr+2,…,sr+i  is not a subsequence of SQπ=s1, s2,..,sr+i-1 . So increase c(N) by 1. 
6. Thereafter,  S is renewed to S=s1, s2,…, sr+i  and Q to Q=ss+i+1. 
7. Repeat the previous steps until Q is the last character. At this point in time, the 

number of subsequences in P is c(N), which corresponds to measure of complexity. 
To arrive at a measure of complexity independent of sequence length, c(N) must be 

normalized. If the length of the sequence is n and the number of different symbols is α, 
it has been shown that the upper bound of c(N) is [26] 

"(#) < 	 �
(��%&)���'(�)

 (5) 

where (N is a small quantity and (N →0 (N→∞). In general, N/logα(N) is the upper limit 
of c(N), i.e., 

lim�→- "(#) = .(#) = 	 �
���'(�)

 (6) 

For a coarse-graining method with six symbols, α=6, b(N)=N/log2(N) and c(N) can 
be normalized by b(N) as 

/(#) = 	 0(�)
1(�)

 (7) 

C(N), the normalized LZC, reflects the arising rate of new patterns  along with the 
sequence and thus captures the temporal structure of the sequence. A larger value of 
LZC means that the chance of generating a new pattern is greater, so the sequence is 
more complex, and vice versa. 

Statistical analysis and Receiver operating characteristic (ROC) plots 

As mentioned above T statistic and χ2 statistic are used to evaluate the statistical 
differences between the estimated MSE and MLZC for normal CHF subjects. If 
significant differences between groups are found, then the ability of the non-linear 
analysis method to discriminate normal from CHF subjects is evaluated using receiver 
operating characteristic (ROC) plots. ROC curves are obtained by plotting sensitivity 
values (which represent the proportion of the patients with diagnosis of CHF who test 
positive) along the y axis against the corresponding (1-specificity) values (which 
represent the proportion of the correctly identified normal subjects) for all the available 
cutoff points along the x axis. Accuracy is a related parameter that quantifies the total 
number of subjects (both normal and CHF) precisely classified. The area under ROC 
curve (AUC) measures this discrimination, that is, the ability of the test to correctly 
classify those with and without the disease. The optimum threshold is the cut-off point 
in which the highest accuracy (minimal false negative and false positive results) is 
obtained. This can be determined from the ROC curve as the closest value to the left top 
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point (corresponding to 100% sensitivity and 100% specificity). An AROC value of 0.5 
indicates that the test results are better than those obtained by chance, where as a value 
of 1.0 indicates a perfectly sensitive and specific test. A rough guide to classify the 
precision of a diagnostic test based on AROC is as follows: If the AROC is between 0.9 
and 1.0, then the results are treated to be excellent; If the AROC is between 0.8 and 
0.89, then the results are treated to be good; the results are fair for values between 0.7 
and 0.79; the results are poor for values between 0.6 and 0.69; If the AROC is between 
0.5 and 0.59, then the outcome is treated to be bad. 
 

 
Figure 1. Modified Shannon entropy as a function of word length for Normal and CHF subjects with 6 

symbols. 

6. Results and discussion 

The results of raw ECG time series from data set one and then the results of the 
corresponding HR time series from data set two are presented. The ECG records of the 
NSR and CHF databases are pre-processed, grouped, and segmented as mentioned in 
Section 4.a above. Symbolic dynamics analysis is then applied to the segments from 
both the groups to decide whether a particular segment belongs to normal, or CHF 
group. Static transformation as given in Equation (1) is applied on each segment to 
arrive at a symbol string with a range of six possible symbols {0, 1, 2, 3, 4, 5} (hex 
symbolization). The order that the regions are visited by the evolving dynamics 
generates a symbol sequence that characterizes physiological conditions. The resulting 
symbol sequence is then grouped in patterns, words, as explained in Sections 4.d and 
4.e, above. The optimum length of the words is determined as explained below.  
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 Figure2. Relative frequency distribution of symbol-sequences for (a) Normal group and (b) CHF 
group. Six symbols of word length 3 were used. 
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Figure3. Relative frequency distribution of symbol-sequences for (a) Normal group and (b) CHF 

group (Fig. 2 exaggerated to visualize lower amplitude bins). Six symbols of word length 3 were used. 

a. Determining Optimum Symbol-sequence Length 

As mentioned above, one approach that is useful for selecting an appropriate 
sequence length involves plotting MSE vs. sequence length and observing the minimum 
which reflects the symbol sequence transformation that best distinguishes the data from 
a random sequence. Thus the sequence length L, for which MSE is minimum, 
corresponds to almost an optimal length. Such plots of MSE vs. sequence/word length 
for hex partitions (with 6 symbols) are shown in Fig. 1 for normal and CHF groups. It is 
found that for normal group L=2 or 3 and for CHF group L=3 or 4. In this work a word 
length of three i.e., L=3 is chosen as a suitable value for both the normal and CHF 
groups. 

b. Characterizing and comparing Symbol-sequence histograms of word length 3 

From the same symbol strings, words of length 3 are built. A sequence code is then 
assigned for each of the words by using equivalent base-10 value for each of the base-n 
word of length 3, where, n is the number of partitions (in this study n=6). The average 
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relative frequencies of length 3 words are then computed over all the segments of the 
respective normal and CHF groups and symbol-sequence histograms are plotted for 
each of the two groups. Figs. 2(a) and 2(b) compare these word histograms for normal, 
and CHF subjects. The same histograms are shown exaggerated in Figs. 3(a) and 3(b) 
for better visualization and comparison of the lower amplitude bins. The relative 
frequency distribution of patterns for the two cases is found to be distinctly different.  
This indicates that there is a difference in the dynamics governing the two data series. 
Comparison among the two histograms shows that in the case of normal group, some 
symbolic sequences and their time-reversed versions, like, 8(012) and 78(210), 
137(345) and 207(543), 1(001) and 36(100), 7(011) and 42(110), 44(112) and 79(211), 
51(123) and 121(321), 94(234) and 164(432), 179(435) and 214(554), etc. exhibit some 
kind of dominance compared to other words. Note that the bin values are expressed as 
decimal (equivalent hex value). Among these sequences the first four bins {8(012) and 
78(210), 137(345) and 207(543)} exhibit maximum dominance. Such sequences appear 
to occur because of non-stationary dynamics in the system, a characteristic of normal 
subjects. In the CHF group the most prominent bins include {43(111), 86(222), 
129(333) and 172(444)}, which are absent in the normal subject histogram. Further, the 
most predominant four bins of normal subjects {8(012) and 78(210), 137(345) and 
207(543)} are absent in the CHF histogram. Such presence and absence of particular 
patterns are typical of CHF subjects. However, all other paired bins are present, but with 
comparatively lower dominance. Besides these lower dominant bins there are additional 
lower dominant paired bins {50(122) and 85(221), 93(233) and 128(332), 122(322) and 
87(223), 130(334) and 165(433), 171(443) and 136(344)}. The only predominant bins 
common to both normal and CHF groups are 0(000) and 215(555). Thus it is found that 
the symbolic sequence histograms are significantly different for each class. This implies 
that the dynamics governing the evolution of the ECG time series for normal and CHF 
subjects is completely different. 

For persons with cardiac risk, the distribution of length-3 words (with 6 symbols) is 
concentrated on about 8 bins (out of 216 bins) where as for healthy persons it is 
characterized by more number of bins. 

c. Symbol-sequence Statistics for the Forward-time and Reverse-time realization 

Symbol sequence statistics (T statistic and the modified χ2 statistic) were applied to 
average relative frequencies of the histograms of both normal and CHF groups and the 
results are tabulated in Table 1. Both the T statistic and the modified χ2 statistic between 
the two groups (normal and CHF) are found to be large. This implies that there is a 
large difference in the dynamics governing the two data series of different groups. 

As mentioned earlier, a heartbeat or cycle influences up to 6-10 cycles downstream 
[9] and this implies time irreversibility of the ECG time series. Using the same symbolic 
analysis, time reversal property studies are performed on both normal and CHF groups. 
Symbol-sequence statistics (T statistic and the modified χ2 statistic) were applied to 
average relative frequencies of the histograms for the forward-time and reverse-time 
realizations of both normal and CHF groups and the results are tabulated in Table 1. 
Both the T statistic and the modified χ2 statistic in the case of normal group are found to 
be larger than those in the case of CHF group. This implies that the level of time 
irreversibility is larger in the normal group than that observed in the CHF group. In 
other words, there is loss of time irreversibility in the CHF group while, prevalence of 
irreversibility in the normal. 
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d. Modified Shannon entropy 

As explained in Section 3 the MSE is evaluated on relative frequency distribution of 
words for both the groups. A comparison statistics (mean ± SD) is shown in Table 2. 
For the normal group the MSE is 0.2163 ± 0.01414 and for CHF group, it is 0.4631 ± 
0.02466, respectively, implying that normal subjects are more informative than CHF 
subjects. 

Table1. T statistic and modified χ2 statistic between ECG signals of normal and CHF groups in the 
forward direction and their respective time-reversed versions. 

Groups T and χ2 statistics 

Normal and CHF 
T = 0.8103 
χ

2 = 1.2658 
Normal and its reversed version 

T = 0.0059 
χ

2 = 0.0065 

CHF and its reversed version 
T = 0.0037 
χ

2 = 0.0035 

Table2. Modified Shannon entropy and Multi-valued LZC (mean ± SD) for ECG signals of normal 
and CHF groups. 

Group Hs 
(p < 0.0001) 

MLZC 
(p < 0.0001) 

Normal 0.2163 ± 0.01414 0.06575 ± 0.0049 
CHF 0.4631 ± 0.02466 0.1488 ± 0.01483 

e. Multi-valued Lempel-Ziv Complexity 

As explained in Section 3 the MLZC is evaluated on hex symbolization of both the 
groups. A comparison statistics (mean ± SD) is also shown in Table 2. For the normal 
group the MLZC is 0.06575 ± 0.0049 and for CHF group, it is 0.1488 ± 0.01483, 
respectively, implying that normal subjects have a decreased complexity of temporal 
patterns compared to CHF subjects. 

f. Receiver Operating Characteristic (ROC) plots 

The ability of the MSE and MLZC to discriminate between normal and CHF 
subjects, in which significant differences were found, is evaluated using ROC plots. 
Figs. 4(a) and 4(b) show ROC curves for the two cases respectively. Table 3 
summarizes the results. The value for the area under the ROC curve can be interpreted 
as follows: an area of 0.9943 (in the case of MLZC, for example) means that a randomly 
selected individual from the normal group has a MLZC value smaller than that of a 
randomly chosen individual from CHF group in 99.43% of the time. A rough guide to 
classify the accuracy of a diagnostic test is related to the area under ROC curve. With 
values between 0.90 and 1.00 the precision is considered to be excellent, for values 
between 0.80 and 0.90 it is good, for the range 0.70-0.79 it is fair, it is poor for the 
range of values between 0.60-0.69, bad for 0.50-0.59 and fail for the values below 0.49. 
Thus the results obtained with both MSE and MLZC are considered excellent 
(AUC=0.9991 and 0.9943, respectively). MLZC showed a sensitivity of 100.0%, 
selectivity of 97.5%, positive predictivity of 86.0% and an accuracy of 97.9% while the 
MSE showed better results with a sensitivity of 100.0%, selectivity of 99.2%, positive 
predictivity of 94.9% and an accuracy of 99.3%. 
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Figure4. ROC plot for discriminating ECG signals of normal and CHF subjects using (a) Modified 

Shannon entropy and (b) Multi-valued LZC. 

Now the results of analyzing HR/RR interval time series from data set two, of the 
same normal and CHF subjects from data set one, are presented. The HR signals are 
pre-processed, grouped, and segmented as mentioned in Section 4.a. The same analysis 
is then applied to the segments from both the groups to determine whether a particular 
segment belongs to normal, or CHF group. Since the aim of this study is to show that 
the measures derived from ECG signals sometimes (as shown in this study) can perform 
better than the same measures obtained from HR signals, only the symbol-sequence 
statistics (T statistic and the modified χ2 statistic) are skipped. However, all other 
results, including comparison statistics of MSE and MLZC are presented. 
 

 

 



 

Journal of Advances in Computer Research  (Vol. 3, No. 3, August  2012) 35-52 
 
 

49 

 
Figure5. ROC plot for discriminating HR signals of normal and CHF subjects using (a) Modified 

Shannon entropy and (b) Multi-valued LZC. 

A comparison statistics of MSE and MLZC (mean ± SD) for HR signals of normal 
and CHF groups from data set two, are tabulated in Table 4. For the normal group the 
MSE is 0.6512 ± 0.04472 and for CHF group, it is 0.3576±0.1923, respectively, 
implying that normal subjects are less informative than CHF subjects. For the normal 
group the MLZC is 0.3613 ± 0.02753 and for CHF group, MLZC is 0.1147 ± 0.08131, 
implying that normal subjects have an increased complexity of temporal patterns 
compared to CHF subjects. 

Table3. ROC results for Modified Shannon entropy and Multi-valued LZC between ECG signals of 
normal and CHF groups 

Parameter AUC  Sensitivity % Selectivity %   Predictivity % 
    (Positive)  Accuracy % 

Hs 0.9991 100 99.2 94.9 99.3   
MLZC 0.9943 100 97.5 86.0 97.9 
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Figs. 5(a) and 5(b) show ROC curves for the MSE and MLZC cases, respectively, 
for HR signals of normal and CHF groups. Table 5 summarizes the results. Thus the 
results obtained with both MSE are considered good (AUC=0.8333) while those with 
MLZC are considered excellent (AUC=0.9333). MSE showed a sensitivity of 75.0%, 
selectivity of 100.0%, positive predictivity of 100.0% and an accuracy of 91.3% while 
the MLZC showed better results with a sensitivity of 87.5%, selectivity of 86.7%, 
positive predictivity of 92.9% and an accuracy of 87.0%. Comparing Tables 3 and 5, it 
is found that AUC values for MSE and MLZC of ECG signals are higher than the 
corresponding measures of HR signals. 

The important findings of this study are: ECG signals of normal subjects are more 
deterministic and have decreased complexity of temporal patterns than ECG signals of 
CHF subjects. ECG signals, both in normal and CHF, exhibit time irreversibility which 
implies that the signals are nonstationary and the generating cardiac systems are 
nonlinear. This is in agreement with previous finding [29]. On the other hand, HR 
signals of normal subjects are less deterministic and have increased complexity of 
temporal patterns than HR signals of CHF subjects. In the present study there is clear 
evidence that, many a time, measures derived from ECG signals do perform better than 
the same measures obtained from HR signals in distinguishing CHF from normal 
subjects. 

 

Table4. Modified Shannon entropy and Multi-valued LZC (mean ± SD) for HR signals of normal and 
CHF groups. 

Group Hs   
(p < 0.0001) 

MLZC 
(p < 0.0001) 

Normal 0.6512 ± 0.04472 0.3613 ± 0.02753 
CHF 0.3576±0.1923 0.1147 ± 0.08131 

 

Table5. ROC results for Modified Shannon entropy and Multi-valued LZC between HR signals of 
normal and CHF groups 

Parameter AUC  Sensitivity % Selectivity %   Predictivity %       
(Positive) Accuracy % 

Hs 0.8333 75 100.0 100.0 91.3 
MLZC 0.9333 87.5 86.7 92.9 87.0 
 

Another chief finding of this study is: Persons with cardiac risk show the 
distribution of length-3 words (with 6 symbols) to be concentrated on about 8 bins (out 
of 216 bins) where as healthy persons show the distribution being characterized by more 
number of bins. 

7. Conclusion 

A new approach to classification of ECG and HR signals using nonlinear symbolic 
dynamic analysis has been presented. The relative frequency distribution in symbol-
sequence histograms reveals significant differences among the normal and CHF classes. 
The MSE reveals increased randomness and decreased deterministic structure in CHF 
group compared to normal group (lower randomness and more deterministic structure). 
MLZC shows decreased complexity in CHF group compared to normal group. 
Although this nonlinear analysis cannot be used as an exact diagnostic tool, our findings 



 

Journal of Advances in Computer Research  (Vol. 3, No. 3, August  2012) 35-52 
 
 

51 

show the possibility to analyze and compare the cardiac dynamic behavior in normal 
and CHF patients using MSE and MLZC. Nonlinear dynamics suggests that CHF can 
be a dynamical disease which is characterized by changes in qualitative dynamics of the 
related physiological processes. Nevertheless, the presented results of this study show 
the effectiveness of symbolic dynamics in ECG and HR signal classification into 
normal and CHF groups. More importantly, the present study shows clear evidence that, 
many a time, measures derived from ECG signals do perform better than the same 
measures obtained from HR signals in distinguishing CHF from normal subjects. 
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