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Abstract

The aim of this study is to show that the measudesived from
Electrocardiogram (ECG) signals many a time perfobetter than the same
measures obtained from heart rate (HR) signals. omgarison was made to
investigate how far the nonlinear symbolic dynanaijgproach helps to characterize
the nonlinear properties of ECG signals and HR algnand thereby discriminate
between normal and congestive heart failure (CHRpjects. The symbolic
dynamics calculations performed on normal and CHFGEand HR signals showed
significant differences in the symbol-sequenceopisim statistics and complexity
measures (modified Shannon entropy (MSE) and wailied Lempel-Ziv
complexity (MLZC)) of symbol sequences betweenvibegroups. The ability of
these complexity measures to discriminate nornwathfCHF subjects was evaluated
using receiver operating characteristic (ROC) pldtss found that MSE and MLZC
measures obtained from ECG signals performed béttan the same measures
derived from HR signals of the same subjects.

Keywords: Congestive heart failure, Complexity measures,ctideardiogram signal,
Heart rate signal, Modified Shannon entropy, Mukitued Lempel-Ziv
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1. Introduction

Despite numerous recent advances in the understardithe pathophysiology of
congestive heart failure (CHF) and improvementgisrtherapy, the mortality rate has
remained high [1]. As a consequence the developofemtw methods and measures of
mortality risk in CHF, including sudden cardiac tfeais still a major challenge in
contemporary cardiology. Besides this, there i€ednto reach remote and underserved
communities with life saving healthcare. A reliabdeitomated diagnostic system
combined with high-speed communication can resdhis issue. This work is an
attempt to develop such an automated system toirdisate between normal and
congestive heart failure subjects.

The rest of this paper is organized as followsSéttion 2, the related works are
discussed. In Section 3, motivation of doing thisrkvand in Section 4, the data used
and the proposed framework are explained. In Se&tjahe measures of complexity are
presented. In Section 6, the results of the appmicaf the new method are discussed.
Finally, some concluding remarks are mentionedectisn 7.
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2. Related Work

Cardiovascular system is characterized by a highptexity, partly because of its
continuous interactions with other physiologicasteyns [2]-[3]. Further, it has been
found that this complexity breakdowns with cardidiseases and also, aging [4].
Cardiac diseases often manifest themselves in cesistic changes in the ECG as well
as HR signals. As an implication the complex dyrenhidden in the generation of
ECG/heart beats cannot be quantified or charaetkusing traditional methods of data
analysis in time and frequency domains [5]. Thesitzal nonlinear methods suffer from
the disadvantage of dimensionality [6]-[7]. Furthttiere are not enough samples in the
time series to arrive at a reasonable estimatbehbnlinear measures [8]. From this
point of view it is advisable to resort to methadsich can quantify system dynamics
even for short time series, like the symbolic dyitamn

For the past few decades, the application of symbkaalysis has found several
diverse fields like, astrophysics, geomagnetismopggsics, classical mechanics,
chemistry, medicine and biology, mechanical systeflisd flow, plasma physics,
robotics, communication, and linguistics [9]. To bpecific, in medicine, various
implementations of symbolic sequences have beend use characterize
electroencephalography (EEG) signals to understhied interaction between brain
structures during seizures [10]. Under mechanigatesns, symbolic methods were
applied to combustion data from internal combustmgines to study the onset of
combustion instabilities [11] and in multiphasewlloata-symbolization were found to
be useful in characterizing and monitoring fluidizged measurement signals [12].
Symbolic dynamics, as an approach to investigatepbex systems, has found profound
use in the analysis of HR signals [13]-[17]. Kurtks al. [13] concluded that the
traditional methods of data analysis in time amdjfiency domains were insufficient to
characterize the HRV. They applied methods of maali dynamics based on symbolic
dynamics to analyze the HRV time series. They fothrat the renormalized entropy
together with the parameters in the frequency domare promising in quantifying
individual risk. Portaet al [14] applied symbolic dynamics to beat-to-beat\Hétries
from 24h Holter recordings. Using a uniform quaati@an procedure the HRV series
was transformed into a sequence of six symbols thedsymbols were grouped in
patterns to characterize physiological conditiohise indexes derived from symbolic
dynamics were found to be capable of discriminatpaghological from healthy
populations. Changes in autonomic modulation duthmeg progression of CHF in rat
model were assessed by Tobald#ial using spectral and symbolic analyses. Their
study revealed that the symbolic analysis was faiende more suitable than spectral
analysis to describe the alterations of heart dyt@gamics [15]. The efficacy of the
measures of complexity based on symbolic dynam@as bheen confirmed in the
assessment of risk of patients after myocardiaratfon and the architecture of human
cancellous bones [16]. Vosst al employ symbolic dynamics to investigate the
complexity of the dynamical aspects of the HRVe®{il7]. By comparison with other
nonlinear methods they conclude that symbolic dyosrhas a close connection to
physiological aspects and that it relatively easynterpret. They found that symbolic
analysis can separate structures of nonlinear dyisamm the HRV series more
successfully than the conventional methods in tamd frequency domains. In all the
above studies and many more, the thrust has beeHRI time series. Although
Shannon entropy and Lempel-Ziv complexity measweehbeen widely used in the
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literature, not much research is found in the cdantef CHF. Based on symbolic
representations and their probability distributiorRarlitz et al used different
biomarkers, including Shannon entropy, to distispUCHF patients from control group
[18]. With Shannon entropy as the biomarker theemrclassification was at 80%.
Vosset al proposed a novel method using compression enteopgmplexity measure
based on Lempel-Ziv algorithm, for the analysideért rate dynamics in CHF patients
[19]. They found compression entropy to be usedutieétect differences in heart rate
dynamics before the onset of ventricular tachyammya.

3. Motivation

The prime advantages of symbolic dynamics are dhewing: If the fluctuations of
the two data series are governed by different dycgrthen the evolution of the
symbolic sequences is not related. The resultimgbsjic sequences histograms give a
reconstruction of their respective histories andvjle a visual representation of the
dynamic patterns. In addition, they may be used basis to build statistics to compare
the regions that show different dynamical proper@ad indicate which patterns are
predominant. Moreover, symbolization has been msfally applied to a number of
noisy nonlinear processes [20]. Thus methods of bsjim dynamics are useful
approaches for classifying the underlying dynaroica time series. Parameters of time
domain and frequency domain often leave these dipsaout of consideration. Fruitful
applications of symbolic methods are preferreditimasions where robustness to noise,
speed, and/or cost is important [9]. The processyohbolization can be used to
represent any possible variation over time, depgndn the number of symbols and the
sequence lengths used. This is a very powerfulgstpfecause it does not make any
assumptions about the nature of the signals/pat{erg., it works equally well for both
linear and nonlinear phenomena).

However, there is hardly any literature where syicbdynamics is applied for the
analysis of raw ECG signals. The disadvantages astraf the methods used for the
analysis of HR signal are (1) misrecognitions of R¥ervals of lengths zero, RR
intervals less than 200 ms (human refractory tian&) pauses, i.e. the interval when
heart does not pump; (2) removal of artefacts @ogble recognition, i.e. R-peak and
T-wave recognized as two beats); and (3) the requaorrections for ectopic beats.
These difficulties make the analysis complicated @me-consuming. Further, some of
the pathologies such as the left bundle branchkbdod the right bundle branch block
cannot be detected using only the heart rate vlityaleatures [21]. On the other hand,
ECG signal is more susceptible to noise than HRasigHowever, symbolic dynamics
takes care of this noise as mentioned above. sndbmtribution symbolic dynamics is
employed to classify (or: distinguish between) bttt ECG and HR signals obtained
from standard Holter recordings from MIT-BIH databanto normal and CHF subjects
using modified Shannon entropy (MSE) and multi-ealuLempel-Ziv complexity
(MLZC) as complexity measures. Receiver operatingracteristic (ROC) plots were
used to evaluate the ability of these complexityasuees to discriminate normal from
CHF subjects.
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4. The Proposed Framework and materials

First the ECG and the corresponding HR data useddmcussed followed by the
symbolic dynamics of the time series.

a. Analyzed data

In this work two data sets of signals from the lenark PhysioNet database [22] are
used. The first data set includes 18 ECG recomi® #IT-BIH normal sinus rhythm
(NSR) database (nsrdb) and ECG records of 15 dshjeth severe CHF (NYHA class
3-4) from BIDMC CHF database (chfdb). The NSR dasabincludes long term ECG
recordings of 5 men, aged 26 to 45 years, and I8empaged 20 to 50 years. The CHF
database includes long term ECGs (about 20 houwts) ed 11 men, aged 22 to 71
years, and 4 women, aged 54 to 63 years. From reaond the modified limb lead I
was only considered for analysis. The resolutioBG8 samples per mV. The sampling
frequency of normal sinus rhythm signal is 128 Hd #hat of CHF signal is 250 Hz.
Since the sampling frequency does influence upan dalculated parameters it is
necessary to have the same sampling frequencyl fimearecords. For this reason ECG
signals from normal database are first re-sample@58@ Hz. Then each record is
divided into segments of equal time duration (26),seith 5000 samples/segment in
both normal sinus rhythm and CHF database. A wit8610 segments from NSR and a
total of 2925 segments from CHF data bases are/zwthl It is to be noted that the
above re-sampling will have no effect on the timofgR-peaks and the derived RR
interval signals.

The second data set includes HR/RR interval sigoilhe same NSR and CHF
subjects as in data set one. All the normal and EfRFrecords are passed through a
square filter to eliminate artifacts, prematuretbeand outliers, if any. Each record was
then divided into segments, with 5500 samples/saegnreboth the groups.

b. Symbolic dynamics analysis

First the two common types of symbolic transforimasi are dealt with and then their
advantages and implications. Then the specificstoamation as applied to ECG and
HR time series are discussed. Next, the construatiosymbol sequences, plotting
symbol-sequence histograms, applying symbol-sequstatistics and finally employ
measures of complexity to decide on the naturercd series are presented.

c. Static and Dynamic transformations

Symbolic dynamics/time series analysis or symldiim, as an approach to
investigate complex dynamical processes, fatd#g the analysis of dynamic
aspects of the signal of interest. The concépymbolic dynamic analysis is based on
coarse-graining of the dynamics of the time s€flg§. That is the range of original
observations or the range of some transform obtlggnal observations such as the first
difference between the consecutive values, istjaréid into a finite number of discrete
regions,n, and each region is associated with a specificbsjim value so that each
observation or the difference between successiveesais uniquely mapped to a
particular symbol depending on the region into Whicfalls. The former mapping is
called static transformation and the latter dynatraosformation. Static transformation
with more number of partitions is preferred where as concerned about observing
details which are small compared to the overalgearOn the other hand dynamic
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transformation is preferred when the observed moeppears nonstationary or has long
time scale variations. Thus the original observetiare transformed into a series of
same length but the elements are only a few diitesgmbols (letters from the same
alphabet), the transformation being termed symbbbn. A good criterion to
symbolize the data is to define the partitions silet (1) the individual occurrence of
each symbol is equiprobable with all other symbamis(2) the measurement range
covered by each region is equal. This is done tiogbout ready differences between
stochastic and deterministic structure in the dBt&. transformations into symbols have
to be chosen context dependent [23]. This way theéysof dynamics simplifies to the
description of symbol sequences. Some detailddrnration is lost in the process
but the coarse and robust properties of the dymabpehavior is preserved and can be
analyzed [23].

d. Symbolic Dynamics and ECG and HR time series

In this study, static transformation approach fobe tsymbolic dynamics [12] is
employed. In the literature a symbolic dynamic espntation using two symbols with
one quantization level or four symbols with threm+uniform quantization levels, as
applied to HR time series is common [24]. Sometirttes thresholds used in these
guantization approaches are related to mean orameafi the time series. But in the
non-stationary signals the mean or the median @abguptly [25]. This problem can
be remedied by using static transformation witifarm quantization levels. This also
fulfills the requirement of a MLZC which demandsiform quantization. In this study
six symbols 1(=6) with five uniform quantization levels as shoiwmarthe eqgn. (1) below
are used.

0, if Xomin S X < X, + 0
1, if X, td<x <Xx,,+2d
2, if X, t2d<Xx <X,,+3d
S = 1)
3, If X, —3d<X <X,,—2d
4, if  X,,—20<X < X,,—d
5 |if Xmax —d S X € Xy

where, Xmin andxmax are respectively, minimum and maximum values efttme series
X. The distance], between partitions is given Iy= (Xmax - Xmin)/N.

After symbolization the next step in the identifioa of characteristic temporal
patterns is the construction of symbol sequencespetific lengthL, termed words,
from the symbol series by gathering groups of sysbothe temporal ordet. is called
the word length. This sequencing process involvefinion of a template of finite
length L that can be moved along the symbol series one @yatba time, each step
revealing a new sequence/word. If each possiblesegience is identified by a unique
identifier the resulting series will be a new tirperies, termed word-sequence series.
The next step is to evaluate the relative frequef@ccurrence of all possible words. A
simple way to keep track word-sequence frequensi&s assign a unique value, called
symbolic code, to each word by computing the cpweading base-10 value for each
base-n word, where, n is the number of partitidhgt example, with number of
partitionsn=2, and word length =3, a sequencel01 will have a sequence code of 5.
The next step is to plot symbol-sequence frequerasea function of symbolic code, the
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plot being termed symbol-sequence histogram. Becatishe above rule of thumb for
partitioning, for a truly random data the relatirequency of all possible symbolic
codes will be equal. This implies that any sigmifit deviation from this equiprobable
feature is an indication of deterministic charaster of the given data, the more the
deviation the more is the data deterministic ameétcorrelated.

e. Determining Optimum Symbol-sequence Length

One approach that is useful for selecting an appatp sequence/word length
involves employing MSE explained in Section 5 beldws empirically found that this
value decreases, reaches a minimum and then iestess sequence length is increased
from 1. This sequence length corresponding to minmeflects the symbol sequence
transformation that best distinguishes the data faorandom sequence [11]. Sequences
that are too short lose some deterministic informmatvhile those that are too long
reflect noise and deplete data for reliable siatistThus the sequence lendth for
which MSE is minimum corresponds to almost an oagtifength. In this study,
empirically it is observed that word lengths ofetar{=3) is a suitable choice for both
the normal and CHF groups as explained in Sectiobe®w. There are several
quantities (statistics and complexity measures) pinaperly characterize such symbol
strings. In this work Euclidean norrt 6tatistic) and a modifiegf statistic are used to
compare the histograms. In particular, the frequatistribution (relative frequencies)
of six symbol and length 3 words, i.e. substringsiclw consist of three adjacent
symbols from the alphabet {0, 1, 2, 3, 4, 5} leaptn a maximum of 126 {pdifferent
words/bins are investigated. The symbol-sequenstwdram for each case is plotted
and then the pattern classification is performdds s a compromise between retaining
important dynamical information and of having ausbstatistics to estimate probability
distribution.

f. Symbol-sequence Statistics

In addition to providing a visual representationtleé dynamic patterns, symbol-
sequence histograms provide the basis for quamétatatistics. As mentioned above
Euclidean norm T statistic) and a modifieg® statistic are employed to compare the
histograms. The Euclidean norm is defined as [12]

Tap = 2i (Ai — By)? (2)
and the modifieg® statistic is defined as [13]

(Ai—Bj)*
(A;+B;)

3)

whereA andB; are the individual sequence probabilities for segae for histograms

A andB. It is seen that both the statistics are obtalmedifferencing the frequencies of

the individual sequences for the different histaggaWhen the frequency differences
are large, the resulting statistics will also beyéa Thus, large values for the statistics
imply that the dynamic patterns in the data setcarapletely different. The Euclidean

norm is based on the idea that each symbol histogean be considered as a vector in
multi-dimensional space, where the number of dinogrsscorresponds to the possible
unique sequences. Consequently, the magnitudeeo¥ehtor difference between the
histograms must provide a good comparison of ttetograms. A larger distance

between histograms implies that the dynamics indhi set are very different. The

X313=Zi
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modified y* statistic has been derived from the standdrstatistic with the univariate
frequencies replaced by sequence frequencies.

g. Time-irreversibility

Time reversibility of a time series refers to thedriance of the statistical properties
under time reversed conditions. It is importantntie that data nonstationarity will
result in time irreversibility [26]-[28]. It is slvan that the time irreversibility, although
not an absolute test for nonstationarity, the degretime reversibility can serve as a
good indicator of nonstationarity [27]. The levdl tome irreversibility is used as an
indicator to classify the ECG records. Symbol-segeehistograms are useful for
guantifying the time irreversibility because théatewe frequencies will shift when the
data are observed backwards in time. Bbtstatistic and modifieg? statistic can be
used to characterize time irreversibility in a givéme series by observing the
difference in symbol sequence histograms for thevdod-time and reverse-time
realizations using the same Equation (2) and (8) wiandB representing histogram
frequencies of forward and reverse time analyssgpectively. The statistic3 Etatistic
and a modified/® statistic) quantify the level of time-irreversibjl

5. Measures of Complexity

The first measure of complexity is the MSE giverlobe [11]. A larger value
implies higher complexity and a smaller value iraplia lower complexity. The MSE
(MSE) defined as

1
Hy = ——— Y p;log p; (4)

log Nops

wherep; is the normalized probability of th€ symbol sequence, ampsis the number
of possible sequences which are actually observedhe data. Note that the
normalization is with respect to Shannon entropyafcompletely random process (one
in which all sequences are equiprobable). The adgenof this normalization is to
bring down the bias on the statistics due to fisie of the data sets. This implies that
the MSE will converge to 1 as the data approaaluesrandomness and for non-random
data this value will b® <Hs < 1.0and a loweHs implies more deterministic structure.

The second measure of complexity is the MLZC. TEE€ lalgorithm was proposed
by Lempel and Ziv to evaluate the randomness akefisequences. It is rather a simple-
to-compute nonparametric measure of complexityabiet for finite length one-
dimensional signals related to the number of distsubstrings and the rate of their
recurrence. Larger values of LZC imply higher coaxtly data. Since LZC analyzes
finite symbol-sequences it is essential that tivemgisignal must first be coarse-grained.
As the symbol sequence using binary coarse-graimethod is likely to lose some
important information of the dynamical system, Imiststudy, a multi-valued coarse-
graining method (with six symbolge=6 as given in Equation (1) above) is used. This
symbolic string is scanned from left to right andcemplexity counterc(N) is
incremented by one unit every time a new subsegueatiern is encountered in the
scanning process, and the immediate next symbagarded as the beginning of the
next subsequence pattern. The LZC can be estimatieg the following algorithm
[26].

1. LetP denote the original string sequenceRe.{s;, s, Ss,.. }, with s defined as in
Equation (1). LeS andQ denote two subsequencesRodndSQbe concatenation @&
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andQ. Also, letSQr be a sequence derived fr@Qafter its last character is deleted (
implying deletion of last character in the sequé¢realo(SQr) denote the vocabulary of
all different subsequences 8.

2. At the beginning, the complexity count&(iN)=1, S=s, Q=s,;, SQ=53,%, and
therefore SQr=s;.

3. In general, witlfs=g, 9, s,...,$ andQ=s.1, SQ=s1, &, S%,...,$. If Q belongs
to 0(SQr) thenQ is subsequence &Qr and not a new sequence.

4. With Sintact, chang®) to s+1, S+2 and check iQ belongs ta(SQr) or not.

5. Keep repeating previous steps uftidoes not belong to(SQr). Now Q=S+1,
S+2,...,%+ IS not a subsequence ®Q=s;, S,..,5+-1. S0 increase(N) by 1.

6. Thereafter,Sis renewed t&=s, S,..., $+ andQ to Q=Sg4j+1.

7. Repeat the previous steps ufliis the last character. At this point in time, the
number of subsequenceshns c(N), which corresponds to measure of complexity.

To arrive at a measure of complexity independergegfuence lengtle(N) must be
normalized. If the length of the sequenca snd the number of different symbolsois
it has been shown that the upper bound(i) is [26]

N

(1—en)loga(N) ®)

whereg&y is a small quantity angy —0 (N—x). In generalN/log,(N) is the upper limit
of c(N), i.e.,

c(N) <

N
loga(N) (6)

For a coarse-graining method with six symbatsg, b(N)=N/log:(N) andc(N) can
be normalized by(N) as

limy_ . c(N) = b(N) =

cV) = 70 (7)

C(N), the normalized LZC, reflects the arising rateneW patterns along with the
sequence and thus captures the temporal strucfuiee sequence. A larger value of
LZC means that the chance of generating a newrpategreater, so the sequence is
more complex, and vice versa.

Statistical analysis and Receiver operating chamgstic (ROC) plots

As mentioned abov@ statistic andy® statistic are used to evaluate the statistical
differences between the estimated MSE and MLZC rformal CHF subjects. If
significant differences between groups are fout@ntthe ability of the non-linear
analysis method to discriminate normal from CHFjecis is evaluated using receiver
operating characteristic (ROC) plots. ROC curves @btained by plotting sensitivity
values (which represent the proportion of the pagievith diagnosis of CHF who test
positive) along the y axis against the correspandib-specificity) values (which
represent the proportion of the correctly identifreormal subjects) for all the available
cutoff points along the x axis. Accuracy is a rethparameter that quantifies the total
number of subjects (both normal and CHF) precistdgsified. The area under ROC
curve (AUC) measures this discrimination, thattie ability of the test to correctly
classify those with and without the disease. Thimapm threshold is the cut-off point
in which the highest accuracy (minimal false negatand false positive results) is
obtained. This can be determined from the ROC casvihe closest value to the left top
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point (corresponding to 100% sensitivity and 10@#éc#icity). An AROC value of 0.5
indicates that the test results are better thasetlobtained by chance, where as a value
of 1.0 indicates a perfectly sensitive and sped#ist. A rough guide to classify the
precision of a diagnostic test based on AROC iekmws: If the AROC is between 0.9
and 1.0, then the results are treated to be extelfethe AROC is between 0.8 and
0.89, then the results are treated to be goodrethdts are fair for values between 0.7
and 0.79; the results are poor for values betwegmd 0.69; If the AROC is between
0.5 and 0.59, then the outcome is treated to be bad

05
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0.45 ——CHF ¢

o
~

0.35¢

o
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Figure 1. Modified Shannon entropy as a function @ford length for Normal and CHF subjects with 6
symbols.

6. Results and discussion

The results of raw ECG time series from data set @md then the results of the
corresponding HR time series from data set twgpaesented. The ECG records of the
NSR and CHF databases are pre-processed, groumgdegmented as mentioned in
Section 4.a above. Symbolic dynamics analysis eés thpplied to the segments from
both the groups to decide whether a particular segrbelongs to normal, or CHF
group. Static transformation as given in Equatith i§ applied on each segment to
arrive at a symbol string with a range of six pbksisymbols {0, 1, 2, 3, 4, 5} (hex
symbolization). The order that the regions aretetsiby the evolving dynamics
generates a symbol sequence that characterize®lolgysal conditions. The resulting
symbol sequence is then grouped in patterns, waigxplained in Sections 4.d and
4.e, above. The optimum length of the words isrdateed as explained below.
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group. Six symbols of word length 3 were used.
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Figure3. Relative frequency distribution of symbekquences for (a) Normal group and (b) CHF
group (Fig. 2 exaggerated to visualize lower ampdle bins). Six symbols of word length 3 were used.

a. Determining Optimum Symbol-sequence Length

As mentioned above, one approach that is usefuls&ecting an appropriate
sequence length involves plotting MSE vs. sequémogth and observing the minimum
which reflects the symbol sequence transformatian best distinguishes the data from
a random sequence. Thus the sequence lehgtfor which MSE is minimum,
corresponds to almost an optimal length. Such @btgISE vs. sequence/word length
for hex partitions (with 6 symbols) are shown ig.F for normal and CHF groups. It is
found that for normal group=2 or 3 and for CHF group=3 or 4. In this work a word
length of three i.e.L.=3 is chosen as a suitable value for both the nloemd CHF
groups.

b. Characterizing and comparing Symbol-sequencaddgams of word length 3

From the same symbol strings, words of length 3baik. A sequence code is then
assigned for each of the words by using equivdlese-10 value for each of the base-n
word of length 3, where) is the number of partitions (in this study n=6heTaverage
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relative frequencies of length 3 words are then mated over all the segments of the
respective normal and CHF groups and symbol-seguérstograms are plotted for
each of the two groups. Figs. 2(a) and 2(b) comg@se word histograms for normal,
and CHF subjects. The same histograms are showggereded in Figs. 3(a) and 3(b)
for better visualization and comparison of the lovanplitude bins. The relative
frequency distribution of patterns for the two sage found to be distinctly different.
This indicates that there is a difference in theadyics governing the two data series.
Comparison among the two histograms shows thatencase of normal group, some
symbolic sequences and their time-reversed versitike, 8(012) and 78(210),
137(345) and 207(543), 1(001) and 36(100), 7(0ht) 42(110), 44(112) and 79(211),
51(123) and 121(321), 94(234) and 164(432), 179(4B8 214(554), etc. exhibit some
kind of dominance compared to other words. Not¢ i@ bin values are expressed as
decimal (equivalent hex value). Among these segetite first four bins {8(012) and
78(210), 137(345) and 207(543)} exhibit maximum dimence. Such sequences appear
to occur because of non-stationary dynamics insifstem, a characteristic of normal
subjects. In the CHF group the most prominent bhimdude {43(111), 86(222),
129(333) and 172(444)}, which are absent in thenabrsubject histogram. Further, the
most predominant four bins of normal subjects {20&nd 78(210), 137(345) and
207(543)} are absent in the CHF histogram. Suclsgiree and absence of particular
patterns are typical of CHF subjects. Howeverptider paired bins are present, but with
comparatively lower dominance. Besides these l@eeninant bins there are additional
lower dominant paired bins {50(122) and 85(221),233) and 128(332), 122(322) and
87(223), 130(334) and 165(433), 171(443) and 13534 he only predominant bins
common to both normal and CHF groups are 0(000)243¢555). Thus it is found that
the symbolic sequence histograms are significatitfgrent for each class. This implies
that the dynamics governing the evolution of theGEine series for normal and CHF
subjects is completely different.

For persons with cardiac risk, the distributionesfgth-3 words (with 6 symbols) is
concentrated on about 8 bins (out of 216 bins) whes for healthy persons it is
characterized by more number of bins.

c. Symbol-sequence Statistics for the Forward-tiaved Reverse-time realization

Symbol sequence statisticE §tatistic and the modifiegf statistic) were applied to
average relative frequencies of the histogramsotti bormal and CHF groups and the
results are tabulated in Table 1. Both Thetatistic and the modifiegf statistic between
the two groups (normal and CHF) are found to bgdaiThis implies that there is a
large difference in the dynamics governing the tata series of different groups.

As mentioned earlier, a heartbeat or cycle inflesngp to 6-10 cycles downstream
[9] and this implies time irreversibility of the EXtime series. Using the same symbolic
analysis, time reversal property studies are peworon both normal and CHF groups.
Symbol-sequence statistic$ 6tatistic and the modifieg? statistic) were applied to
average relative frequencies of the histogramstter forward-time and reverse-time
realizations of both normal and CHF groups andrdseilts are tabulated in Table 1.
Both theT statistic and the modifiegf statistic in the case of normal group are found to
be larger than those in the case of CHF group. Thgies that the level of time
irreversibility is larger in the normal group théimat observed in the CHF group. In
other words, there is loss of time irreversibiitlythe CHF group while, prevalence of
irreversibility in the normal.
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d. Modified Shannon entropy

As explained in Section 3 the MSE is evaluatededative frequency distribution of
words for both the groups. A comparison statisfrogan + SD) is shown in Table 2.
For the normal group the MSE is 0.2163 + 0.0141d fan CHF group, it is 0.4631 *
0.02466, respectively, implying that normal sulgeate more informative than CHF
subjects.

Tablel. T statistic and modifieg? statistic between ECG signals of normal and CHFogps in the
forward direction and their respective time-revedseersions.

Groups T and x° statistics
Normal and CHF Izzzol.?2160538
Normal and its reversed version IZ==0(5.()0005695
CHF and its reversed version 12==0690003375

Table2. Modified Shannon entropy and Multi-valueddC (mean * SD) for ECG signals of normal
and CHF groups.

Group Hs MLZC

(p < 0.0001) (p < 0.0001)
Normal 0.2163 + 0.01414 0.06575 + 0.0049
CHF 0.4631 + 0.02466 0.1488 + 0.01483

e. Multi-valued Lempel-Ziv Complexity

As explained in Section 3 the MLZC is evaluatedher symbolization of both the
groups. A comparison statistics (mean = SD) is alsown in Table 2. For the normal
group the MLZC is 0.06575 + 0.0049 and for CHF groit is 0.1488 + 0.01483,
respectively, implying that normal subjects havdegreased complexity of temporal
patterns compared to CHF subjects.

f. Receiver Operating Characteristic (ROC) plots

The ability of the MSE and MLZC to discriminate Wween normal and CHF
subjects, in which significant differences wererfduis evaluated using ROC plots.
Figs. 4(a) and 4(b) show ROC curves for the twoesasespectively. Table 3
summarizes the results. The value for the arearuhdeROC curve can be interpreted
as follows: an area of 0.9943 (in the case of MLEXC example) means that a randomly
selected individual from the normal group has a ML¥alue smaller than that of a
randomly chosen individual from CHF group in 99.48%the time. A rough guide to
classify the accuracy of a diagnostic test is eeldb the area under ROC curve. With
values between 0.90 and 1.00 the precision is dereil to be excellent, for values
between 0.80 and 0.90 it is good, for the rang®-0.79 it is fair, it is poor for the
range of values between 0.60-0.69, bad for 0.50-8rfl fail for the values below 0.49.
Thus the results obtained with both MSE and MLZ@& aonsidered excellent
(AUC=0.9991 and 0.9943, respectively). MLZC showadsensitivity of 100.0%,
selectivity of 97.5%, positive predictivity of 86®0and an accuracy of 97.9% while the
MSE showed better results with a sensitivity of .000, selectivity of 99.2%, positive
predictivity of 94.9% and an accuracy of 99.3%.
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Figure4. ROC plot for discriminating ECG signals aformal and CHF subjects using (a) Modified
Shannon entropy and (b) Multi-valued LZC.

Now the results of analyzing HR/RR interval timeiese from data set two, of the
same normal and CHF subjects from data set oneprasented. The HR signals are
pre-processed, grouped, and segmented as mentiosattion 4.a. The same analysis
is then applied to the segments from both the grdapletermine whether a particular
segment belongs to normal, or CHF group. Sinceathreof this study is to show that
the measures derived from ECG signals sometimesh(@sn in this study) can perform
better than the same measures obtained from HRalsiganly the symbol-sequence
statistics T statistic and the modifieg® statistic) are skipped. However, all other
results, including comparison statistics of MSE MidZC are presented.
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Figure5. ROC plot for discriminating HR signals aformal and CHF subjects using (a) Modified
Shannon entropy and (b) Multi-valued LZC.

A comparison statistics of MSE and MLZC (mean + $®)HR signals of normal
and CHF groups from data set two, are tabulatetaivle 4. For the normal group the
MSE is 0.6512 + 0.04472 and for CHF group, it i8506+0.1923, respectively,
implying that normal subjects are less informativan CHF subjects. For the normal
group the MLZC is 0.3613 + 0.02753 and for CHF groMLZC is 0.1147 + 0.08131,
implying that normal subjects have an increased ptexity of temporal patterns
compared to CHF subjects.

Table3. ROC results for Modified Shannon entropy@&Multi-valued LZC between ECG signals of
normal and CHF groups

Predictivity %

Parameter AUC Sensitivity % Selectivity % o Accuracy %
(Positive)

Hs 0.9991 100 99.2 94.9 99.3

MLZC 0.9943 100 97.5 86.0 97.9
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Figs. 5(a) and 5(b) show ROC curves for the MSE 6ihdC cases, respectively,
for HR signals of normal and CHF groups. Table Bsarizes the results. Thus the
results obtained with both MSE are considered g@ddiC=0.8333) while those with
MLZC are considered excellent (AUC=0.9333). MSE g0 a sensitivity of 75.0%,
selectivity of 100.0%, positive predictivity of 1096 and an accuracy of 91.3% while
the MLZC showed better results with a sensitivify87.5%, selectivity of 86.7%,
positive predictivity of 92.9% and an accuracy @f®%6. Comparing Tables 3 and 5, it
is found that AUC values for MSE and MLZC of EC@rsls are higher than the
corresponding measures of HR signals.

The important findings of this study are: ECG signaf normal subjects are more
deterministic and have decreased complexity of teaipatterns than ECG signals of
CHF subjects. ECG signals, both in normal and GéRjbit time irreversibility which
implies that the signals are nonstationary and dbeerating cardiac systems are
nonlinear. This is in agreement with previous firgi[29]. On the other hand, HR
signals of normal subjects are less deterministid have increased complexity of
temporal patterns than HR signals of CHF subjdotshe present study there is clear
evidence that, many a time, measures derived fr@@ Eignals do perform better than
the same measures obtained from HR signals inndigBhing CHF from normal
subjects.

Table4. Modified Shannon entropy and Multi-valuedZIC (mean * SD) for HR signals of normal and

CHF groups.
Grou Hs MLZC
P (p < 0.0001) (p < 0.0001)
Normal 0.6512 £0.04472 0.3613 £0.02753
CHF 0.3576%0.1923 0.1147 +0.08131

Table5. ROC results for Modified Shannon entropydMulti-valued LZC between HR signals of
normal and CHF groups

Predictivity %

Parameter AUC Sensitivity % Selectivity % L Accuracy %
(Positive)

Hs 0.8333 75 100.0 100.0 91.3

MLZC 0.9333 87.5 86.7 92.9 87.0

Another chief finding of this study is: Persons twitardiac risk show the
distribution of length-3 words (with 6 symbols)lde concentrated on about 8 bins (out
of 216 bins) where as healthy persons show thallisibn being characterized by more
number of bins.

7. Conclusion

A new approach to classification of ECG and HR algrusing nonlinear symbolic
dynamic analysis has been presented. The relategudncy distribution in symbol-
sequence histograms reveals significant differeaoesng the normal and CHF classes.
The MSE reveals increased randomness and decrdasahinistic structure in CHF
group compared to normal group (lower randomnedsnaore deterministic structure).
MLZC shows decreased complexity in CHF group comgato normal group.
Although this nonlinear analysis cannot be useanasxact diagnostic tool, our findings
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show the possibility to analyze and compare théiaardynamic behavior in normal
and CHF patients using MSE and MLZC. Nonlinear dyrea suggests that CHF can
be a dynamical disease which is characterized bggds in qualitative dynamics of the
related physiological processes. Neverthelessptasented results of this study show
the effectiveness of symbolic dynamics in ECG arld Bignal classification into
normal and CHF groups. More importantly, the préest&undy shows clear evidence that,
many a time, measures derived from ECG signals effopn better than the same
measures obtained from HR signals in distinguisi@iti- from normal subjects.
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