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Abstract

Abstract: In this paper, the gain in LD-CELP speeobding algorithm is
predicted using three neural models, that are epe&d by genetic and particle
swarm optimization (PSO) algorithms to optimize $treicture and parameters of
neural networks. Elman, multi-layer perceptron (NJldhd fuzzy ARTMAP are the
candidate neural models. The optimized number desan the first and second
hidden layers of EIman and MLP and also the initigdights and biases of these
nets are determined by genetic algorithm (GA) aB®DPIn the fuzzy ARTMAP, the
choice parameterq, learning rate,f, and vigilance parametep, are selected by
GA and PSO, as well. In this way, the performanc&A and PSO are compared
when using different neural architectures in thigphcation. Empirical results show
that when gain is predicted by Elman and MLP neuratworks with GA/PSO-
optimized parameters, the segmental signal to no&® (SNRseg) and mean
opinion score (MOS) are improved as compared tditi@nal implementation
based on ITU-T G.728 recommendation. On the otaedhfuzzy ARTMAP-based
gain predictor reduces the computational compleriyiceably, with no significant
degradations in SNRseg and MOS.

Keywords: Speech coding, neural networks, genetic algorithparticle swarm
optimization.

Abbreviations:

LD-CELP: Low Delay Code Excited Linear Prediction;
AbS: Analysis by Synthesis;

LPC: Linear Prediction Coding;

ANN: Artificial Neural Network;

GA: Genetic Algorithm;

PSO: Particle Swarm Optimization;

SNRseg Segmental Signal to Noise Ratio;

MOS: Mean Opinion Score.

1. Introduction

In May 1992, Consultative Committee for Internaibifelephony and Telegraphy
(CCITT) approved a 16 kbps low delay code exciteedr prediction (LD-CELP)
coding algorithm with a delay less than 2 ms armdmemended it as G.728 [1]. In 1994,
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fixed-point version of LD-CELP was introduced [2D-CELP is a member of CELP

coder family which is based on the analysis by lsysis (AbS) technique proposed by
B.S. Atal and R. Remde in 1982 [3]. In LD-CELP, diterm and long-term predictor

coefficients and also log-gain predictors are al#di adaptively backward and are
updated by LPC analysis of the former quantizeckeapend excitation, respectively.
Many researchers got interested to improve theopmdce of this codec [4-8].

On the other hand, artificial neural networks (ANINse increasingly used in the
field of speech coding algorithms in the recentades [9-17]. In our pervious work
[18], three neural gain predictors were proposed.-CELP speech coding algorithm.
Those ANNs were Elman, MLP and fuzzy ARTMAP. Inttaork, the parameters of
networks were selected by experiments. In this pape structure and parameters of
mentioned candidate neural networks (e.g. the nuwibeodes in hidden layers, initial
weights and biases of Elman and MLP, and critiegrding parameters of fuzzy
ARTMAP) are optimized using genetic algorithm (GAnd particle swarm
optimization (PSO) algorithm.

GA finds approximate solutions to optimization amdarch problems. Genetic
algorithm is a particular class of evolutionaryalthms that uses techniques inspired
by evolutionary biology such as inheritance, motatiand recombination [19]. PSO is
proposed by J. Kennedy and R.C. Eberhart in 1998ivated by social behavior of
organisms. PSO provides a population-based seadztegure in which individuals,
called particles, change their position (statehwiitne. In PSO, particles fly around in a
multidimensional search space. During flight, eggérticle adjusts its position
according to its own experience and neighboringigar making use of the best
position encountered by itself and its neighborug;kas in modern GAs, a PSO system
combines local search methods with global searcthads, attempting to balance
exploration and exploitation [20-24].

This paper is organized as follows. Section 2 gavdsief overview of the 16 kbps
LD-CELP architecture. In section 3, proposed hybgdnetic-neural models are
introduced. Proposed hybrid PSO-neural models m@ussed in section 4. Empirical
results are reported in section 5 and conclusiomsli@awn in section 6.

2. Architecture of LD-CELP Coder

LD-CELP is an analysis-by-synthesis codebook drirexthod for linear predictive
speech coding [1]. In this coder, which is an emuganethod based on a source filter
model, speech is reproduced using excitation caderse that are time-series signals
and are stored in an excitation codebook to drilieear predictive synthesis filter that
represents the spectral envelope of input spedod.optimal excitation codevector is
selected from the excitation codebook by usingosesd-loop search according to the
analysis-by-synthesis (AbS) method to find the baeing the minimum perceptually-
weighted waveform distortion of synthetic speeamnal to the input speech signal. The
basic structure of encoder with the proposed meatifon in its gain adaptation block is
shown in Fig. 1.

As shown in Fig. 1, backward gain adaptation blaxkeplaced by a GA/PSO-
optimized ANN model. As shown in the block diagraxh backward adaptation of
excitation gain (Fig. 2), input and output of thieck are gain-scaled excitatioa(n),
and excitation gaing(n), respectively. The 1-vector delay unit makes tfexipus gain-
scaled excitation vectoe(n—1) available. The root-mean-square (RMS) calcultdten
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calculates the RMS value of the vectdn—1) Then, the logarithm calculator calculates
the dB value of the RMS @f(n—1) A log-gain offset value of 32 dB is stored in thg-
gain offset value holder. The adder subtracts tbggain offset value from the
logarithmic gain produced by the logarithm calcotafThe offset removed logarithmic
gain, dn-1) is then used by the hybrid windowing module amel iLevinson-Durbin
recursion module. The output of Levinson-Durbinurson module is the coefficients
of tenth order LPC. The bandwidth expansion modhtn moves the roots of this
polynomial radially toward the origin of z-planehd predictor attempts to predidin)
based on a linear combination &h—1) An-2), ..., An—10)[1]. The predicted version
of &n) is denoted ag(n) and is given by:

10

o(n)=-,a4(n-1i) (1)

i=1

In the next step, offset value addsdim) and then the log-gain limiter clips the level
of it, if the log-gain value is below O dB or abo&@ dB. Finally, in inverse logarithm
calculator the value of log-gain in logarithmic daimis converted to linear domain.

To predict the gain by ANN, the scaled excitatiattor, e(n), is fed as the input
pattern to network and the excitation gaifn), is assumed as the output of network.
The codebook search module, searches through la@2didate codevectors in the
excitation vector quantization (VQ) codebook andd§ the index of the best
codevector. Indeed, in excitation VQ codebook,libst shape codevector and the best
gain value which are extracted from codebook moduwéemultiplied by each other to
get the quantized excitation vectdn). Then, this vector multiplies by gain and results
the scaled excitation vecta¥(n) Excitation gain is the output of backward gain
adaptation block. The dimension of scaled excitatiector is 5.

3. Hybrid GA-Neural Models

The genetic algorithm is a method for solving ojation problems based on
natural selection, the process that drives bioklge&volution. The genetic algorithm
repeatedly modifies a population of individual tmos. At each step, the genetic
algorithm selects individuals randomly from thereuat population to be parents and
uses them to produce the children for the next igeioe. There are several methods for
selecting parents such as stochastic uniform setgectemainder selection, roulette
selection and tournament selection. Fig. 3 showsflttwchart of GA algorithm. The
details of GA-neural models for gain prediction egported in the following.

3.1 GA-Elman/MLP Gain Predictor

Elman NN is a type of partial recurrent networkshwan additional feedback
connection from the output of the first layer te ihput layer [25-26]. In this study,
Elman has tangent sigmoid (‘tansig’) neurons itwitshidden layers, and linear neurons
in its output layer. In this work, the optimizedmioer of neurons in hidden layers is
selected by GA. The fitness function measures tladityy of the solution in GA and is
application-dependent. In this application, thedgs function in Elman and MLP neural
model simulations is chosen as follows [27]:

1

" se? @
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At the beginning, the generated values by fithagsction are not suitable for
selection process of patterns. So, fithess scadingecessary to map those raw values
into a new suitable range for the selection fumctibhe range of scaled values affects
the performance of genetic algorithm. In this stutBank" fithess scaling function is
used to remove the effects of raw scores spreadrdaie the next generation, GA uses
elite children that are individuals with the bastdss values in the current generation.
In our simulations, population size is assumedetd®. Two elite children, 26 crossover
children, and 12 mutation children are used. hoged that the fraction of individuals
that is used in crossover process is set to 0.@. Gaussian function is used as the
mutation function. The amount of mutation is desegh at each new generation
(proportional to the standard deviation of Gaussiatribution). "Shrink" parameter
determines the rate of this decrement. The stargiardtion of Gaussian distribution is
decreased linearly until its final value reacheg¢lteShrink) times of its initial value at
the first generation. The value of "Shrink” paragnes set to 1 in our simulations.
Several values of population size and differentesymf selection, crossover and
mutation functions are used in our investigati@dsusing the “Rank” scaling function,
some of the best results for the optimized numlb@odes in hidden layers, in terms of
fitness valudF), are listed in Table 1.

The initial weights and biases of EIman NN are mped by GA, too. The
optimized weights and biases of first hidden layedes for the 8-10-1 topology are
reported in Eg. 3 and Eq. 4, respectively.

[ 1.0877 1.3928 2.8673-0.1782 -1.1239]
0.9202-0.0769-0.3761 1.3426 -2.7510
1.1511-1.3513 0.7900 1.2148 1.4329
0.6071-1.2600 -0.0103 3.6416-1.5062
3.1232 3.5332 -2.2861-2.0304 3.6926 ®)
1.9257-1.3547 -3.7061-1.2756-2.9801

-2.6184-1.8240 -3.1049-2.5749 0.1191

1-1.4636-2.9232 0.2342-1.0640-3.2962

opt_GA —

Boo on = |- 2.3218 2.8676-3.0072.79062.4241L.24790.775: 3.856]L  (4)

The training parameters of Elman network in hyliBd-neural model are listed in
Table 2. It is noted that the Elman and MLP netwatke simulated in Neural Networks
Toolbox of MATLAB software. The training datasetindes 40,000 vectors of fifteen
male and twenty female speakers with different miscel'he test dataset includes 9,000
vectors, as well.

The optimized number of hidden layers nodes art@inveights and biases for MLP
are determined by GA, too. The training parametérMLP network in hybrid GA-
neural model are listed in Table 3, as well.

3.2 GA-Fuzzy ARTMAP Gain Predictor
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Until now, many types of adaptive resonance thddiT) family networks have
introduced and used. In general, this family of rabmetworks include AR ART>
[28], ART; [29], ARTMAP [30], Fuzzy ART [31], ART-EMAP [32]Distributed
ARTMAP [33], Boosted ARTMAP [34], Fuzzy ARTVar [35}. ARTMAP [36] and
Fuzzy ARTMAP [37].

Fuzzy ARTMAP is the neural network architecture facremental supervised
learning of recognition categories and multidimenai maps in response to arbitrary
sequences of analog or binary input vectors. lteaes a synthesis of fuzzy logic and
ART neural networks by exploiting a close formahgarity between the computations
of fuzzy method and ART category choice, resonamcklearning. ARTMAP networks
consist of two ART networks, ART, and AR, bridged via an inter-ART module. An
ART; module has three layers: input lay&), the comparison layef;), and the
recognition layern(F,). Fuzzy ARTMAP is a natural extension to ARTMAP tth&ses
fuzzy ART instead of ARTmodules.

The operation of fuzzy ARTMAP is affected by twawerk parameters, the choice
parameterp, and the baseline vigilance parameferBoth of these parameters take
values in the interval [0,1] and affect the numbérnodes created in the category
representation layer of fuzzy ARTMAP. Another imfaort parameter is the leaning
rate,f. In this study, the optimized values of thesedhparameters are determined by
GA to have the best correct identification rate.

The dataset which is used to train the Elman andP Mktworks is not suitable for
fuzzy ARTMAP and some preprocessing is needed. z\F@RTMAP requires input
patterns to be presented as vectors of floatingitpoumbers in the range [0, 1].
Therefore, the training and test datasets needalmation. The value of excitation gain
in G.728 recommendation is in the range of [0 dBd&). In our fuzzy ARTMAP
structure, this interval is divided to 540 class®s, the resolution of this classification
is about 0.1 dB. The fitness function in fuzzy ARARI simulation is chosen as
follows:

F =(po)* (5)

where pc is the correct classification rate. Thepybation size and
selection/crossover/mutation functions that rethdt best fitness value are reported in
Table 4. The specifications of fuzzy ARTMAP-basedngpredictor in our simulations
are reported in Table 5.

4. Hybrid PSO-Neural Models

In PSO, particles move in a multidimensional seaghce. In this algorithm, each
particle has a velocity and a position as follow:

Vi (k+D) = v, (k) + 3 (R =% (k) + y2 (G = % (k) (6)

% (k+1) =x(k)+v(k+1) (7)

where i is particle index, k is discrete time indexis velocity of ith particle, xis
position of ith particle, Pis the best position found by ith particle (pemsonest), G is
the best position found by swarm (global begt)andy, are random numbers in the
interval [0,1] applied to ith particle. In our sitations, the following equation is used
for velocity [20]:

vi(k+2) = @KV, (k) + a, [y (P = x (k)] + @, [y (G, - x (k)] (8)
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in which ¢ is inertia functiongy anday are acceleration constants.

4.1 PSO-Elman/MLP Gain Predictor

The number of nodes in hidden layers, and theaimntieights and biases of EIman
and MLP neural models are selected by PSO algorithnthis section. In our
simulations, the maximum particle velocity is set 2, population size is 20, and
acceleration constants are set to 2. The inertiaken as a decreasing linear function
from 0.9 to 0.2. So, the influence of past veloditycomes smaller. The training
parameters of Elman and MLP networks in hybrid RfeOral models are listed in
Table 6 and Table 7, respectively.

4.2 PSO-Fuzzy ARTMAP Gain Predictor

The optimized values of learning rate, choice aigillance parameters, as three
important parameters in fuzzy ARTMAP, are deterrdibg PSO algorithm to have the
best correct identification rate in classifier. Thpecifications of this neural gain
predictor in our simulation are listed in Table 8.

5. Experimental Results

A 16 kbps LD-CELP coder, based on the ITU-T G.728ommendation, is
implemented in this work [1]. Farsi speech datasfibf FARSDAT [38] are used as
dataset in this study. The performance comparis@iman-based and MLP-based gain
predictors, with optimized parameters by GA or PSipws that MSE in Elman is
lower than MLP. The number of training epochs im&h is lower than MLP, too. On
the other hand, the number of epochs and trairimg of fuzzy ARTMAP are the
lowest ones. The execution time of proposed hyimdiels, calculated for 1000 frames
of speech, is also compared to traditional backvwgaid adaptation, based on G.728, as
the reference. This comparison shows a reducti@xécution time, when using each of
GA/PSO-neural hybrid models. However, GA-fuzzy ARARI hybrid model has the
lowest execution time (Fig. 4).

The performance of proposed optimized-neural garadiptors, in terms of
segmental signal-to-noise ratio (SN and mean opinion score (MOS), is also
compared with a traditional G.728 [4, 5]. In thiaywvthe SNRgand MOS of traditional
implementation are 18.45 dB and 3.91, respectii&ly89]. The comparison of SNE
and MOS of proposed hybrid models with traditioBar28, in terms of relative values,
is shown in Fig. 5. This comparison shows that \erage of 0.6 dB improvement in
SNRsegand also an improvement of 0.3 in MOS are achiewdten using GA/PSO-
Elman/MLP hybrid models. However, an average oB@B reduction in SNRjand
0.4 reduction in MOS are experienced when usingR®U-fuzzy ARTMAP hybrid
models.

6. Conclusions

In this paper, backward gain adaptation module .G28 speech coder was replaced
by three candidate neural gain predictors withrojed structures and parameters by

6
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employing GA and PSO algorithms. Elman, MLP andzfuARTMAP were the
candidate neural models in this work. Empiricablessshowed that gain prediction by
optimized-GA/PSO Elman and MLP neural networks, nowvgd the SNRgand MOS
as compared to traditional implementation of G.7Z2Hh the other hand, fuzzy
ARTMAP-based gain predictor reduced the computaticomplexity noticeably, with
no significant degradations in Shigand MOS.
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Fig. 5 Relative SNR;and MOS of proposed models as compared to traditiGn728 implementation

Table 1 Optimized number of hidden layer nodes in EIman NN

Population | Selection Crossover Mutation Nur_nber of
. . . ; hidden F(x107)
size function function function
layer nodes
40 Uniform Heuristic Gaussian 8-10 49.43
40 Roulette Scattered Gaussian 9-10 47.50
40 Stophasﬂc Scattered Gaussian 10-9 42.90
uniform
20 Stophasﬂc Intermediate Uniform 10-8 37.68
uniform

Table 2 Training parameters of Elman network in hybrid @édral model

Parameter Value or type
Train function ‘trainlm'’
net.trainParam.goal 0.01
Number of nodes in layers 8-10-1
Transfer function of layers 'tansig’, 'tansig’, 'purelin’
Number of epochs 1500
MSE on the test data 0.01155

Table 3 Training parameters of MLP network in hybrid GAdrel model

Parameter Value or type
Train function ‘trainlm’
net.trainParam.goal 0.01
Number of nodes in layers 11-9-1
Transfer function of layers 'tansig’, 'tansig’, 'purelin’
Number of epochs 2000
MSE on the test data 0.01308

11
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Table 4 GA specifications in GA-fuzzy ARTMAP hybrid gaiediction

Population size

Selection function

Crossover function

Mutation function

F(x10)

40

Stochastic uniform

Scattered

Gaussian

81

Table 5 Fuzzy ARTMAP gain predictor specifications, GAiroted parameters

Table 6 Training parameters of Elman network in hybrid R8€ural model

Table 7 Training parameters of MLP network in hybrid PS@iral model

Specification Value
Learning rated 0.9846
Vigilance parametep, 0.9738
Vigilance parametep, 0.3802
Choice parameter 0.9889
Number of i nodes 10
Number of F nodes 301
Number of K nodes 301
Number of epochs 1
Correct identification rate 90%

Parameter Value or type
Train function '‘trainlm’
net.trainParam.goal 0.01
Number of nodes in layers 11-11-1
Transfer function of layers 'tansig’, 'tansig’, 'purelin’
Number of epochs 1200
MSE on the test data 0. 01115

Parameter Value or type
Train function ‘trainlm'’
net.trainParam.goal 0.01
Number of nodes in layers 11-10-1
Transfer function of layers 'tansig’, 'tansig’, 'purelin’
Number of epochs 2000
MSE on the test data 0.01174

Table 8 Fuzzy ARTMAP gain predictor specifications, PS@roged parameters

Specification Value
Learning rated 1
Vigilance parametep, 0.8008
Vigilance parametep,; 0.3001
Choice parameter 1
Number of i nodes 10
Number of f nodes 621
Number of K nodes 621
Number of epochs 1
Correct identification rate 95%
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