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Abstract 
Abstract: In this paper, the gain in LD-CELP speech coding algorithm is 

predicted using three neural models, that are equipped by genetic and particle 
swarm optimization (PSO) algorithms to optimize the structure and parameters of 
neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the 
candidate neural models. The optimized number of nodes in the first and second 
hidden layers of Elman and MLP and also the initial weights and biases of these 
nets are determined by genetic algorithm (GA) and PSO. In the fuzzy ARTMAP, the 
choice parameter, α, learning rate, β, and vigilance parameter, ρ, are selected by 
GA and PSO, as well. In this way, the performance of GA and PSO are compared 
when using different neural architectures in this application. Empirical results show 
that when gain is predicted by Elman and MLP neural networks with GA/PSO-
optimized parameters, the segmental signal to noise ratio (SNRseg) and mean 
opinion score (MOS) are improved as compared to traditional implementation 
based on ITU-T G.728 recommendation. On the other hand, fuzzy ARTMAP-based 
gain predictor reduces the computational complexity noticeably, with no significant 
degradations in SNRseg and MOS. 

 
Keywords: Speech coding, neural networks, genetic algorithm, particle swarm 

optimization. 
 

 

Abbreviations: 

LD-CELP: Low Delay Code Excited Linear Prediction; 
AbS: Analysis by Synthesis; 
LPC: Linear Prediction Coding; 
ANN: Artificial Neural Network; 
GA: Genetic Algorithm; 
PSO: Particle Swarm Optimization; 
SNRseg: Segmental Signal to Noise Ratio; 
MOS: Mean Opinion Score. 

1. Introduction 

In May 1992, Consultative Committee for International Telephony and Telegraphy 
(CCITT) approved a 16 kbps low delay code excited linear prediction (LD-CELP) 
coding algorithm with a delay less than 2 ms and recommended it as G.728 [1]. In 1994, 
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fixed-point version of LD-CELP was introduced [2]. LD-CELP is a member of CELP 
coder family which is based on the analysis by synthesis (AbS) technique proposed by 
B.S. Atal and R. Remde in 1982 [3]. In LD-CELP, short-term and long-term predictor 
coefficients and also log-gain predictors are obtained adaptively backward and are 
updated by LPC analysis of the former quantized speech and excitation, respectively. 
Many researchers got interested to improve the performace of this codec [4-8]. 

On the other hand, artificial neural networks (ANNs) are increasingly used in the 
field of speech coding algorithms in the recent decades [9-17]. In our pervious work 
[18], three neural gain predictors were proposed for LD-CELP speech coding algorithm. 
Those ANNs were Elman, MLP and fuzzy ARTMAP. In that work, the parameters of 
networks were selected by experiments. In this paper, the structure and parameters of 
mentioned candidate neural networks (e.g. the number of nodes in hidden layers, initial 
weights and biases of Elman and MLP, and critical learning parameters of fuzzy 
ARTMAP) are optimized using genetic algorithm (GA) and particle swarm 
optimization (PSO) algorithm. 

GA finds approximate solutions to optimization and search problems. Genetic 
algorithm is a particular class of evolutionary algorithms that uses techniques inspired 
by evolutionary biology such as inheritance, mutation, and recombination [19]. PSO is 
proposed by J. Kennedy and R.C. Eberhart in 1995, motivated by social behavior of 
organisms. PSO provides a population-based search procedure in which individuals, 
called particles, change their position (state) with time. In PSO, particles fly around in a 
multidimensional search space. During flight, each particle adjusts its position 
according to its own experience and neighboring particle, making use of the best 
position encountered by itself and its neighbor. Thus, as in modern GAs, a PSO system 
combines local search methods with global search methods, attempting to balance 
exploration and exploitation [20-24]. 

This paper is organized as follows. Section 2 gives a brief overview of the 16 kbps 
LD-CELP architecture. In section 3, proposed hybrid genetic-neural models are 
introduced. Proposed hybrid PSO-neural models are discussed in section 4. Empirical 
results are reported in section 5 and conclusions are drawn in section 6. 

2. Architecture of LD-CELP Coder 

LD-CELP is an analysis-by-synthesis codebook driven method for linear predictive 
speech coding [1]. In this coder, which is an encoding method based on a source filter 
model, speech is reproduced using excitation codevectors that are time-series signals 
and are stored in an excitation codebook to drive a linear predictive synthesis filter that 
represents the spectral envelope of input speech. The optimal excitation codevector is 
selected from the excitation codebook by using a closed-loop search according to the 
analysis-by-synthesis (AbS) method to find the one having the minimum perceptually-
weighted waveform distortion of synthetic speech signal to the input speech signal. The 
basic structure of encoder with the proposed modification in its gain adaptation block is 
shown in Fig. 1. 

As shown in Fig. 1, backward gain adaptation block is replaced by a GA/PSO-
optimized ANN model. As shown in the block diagram of backward adaptation of 
excitation gain (Fig. 2), input and output of this block are gain-scaled excitation, e(n), 
and excitation gain, σ(n), respectively. The 1-vector delay unit makes the previous gain-
scaled excitation vector, e(n–1), available. The root-mean-square (RMS) calculator then 
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calculates the RMS value of the vector e(n–1). Then, the logarithm calculator calculates 
the dB value of the RMS of e(n–1). A log-gain offset value of 32 dB is stored in the log-
gain offset value holder. The adder subtracts this log-gain offset value from the 
logarithmic gain produced by the logarithm calculator. The offset removed logarithmic 
gain, δ(n–1), is then used by the hybrid windowing module and the Levinson-Durbin 
recursion module. The output of Levinson-Durbin recursion module is the coefficients 
of tenth order LPC. The bandwidth expansion module then moves the roots of this 
polynomial radially toward the origin of z-plane. The predictor attempts to predict δ(n) 
based on a linear combination of δ(n–1), δ(n–2), ..., δ(n–10) [1]. The predicted version 
of δ(n) is denoted as )(ˆ nδ  and is given by: 

10

1

ˆ( ) ( )i
i

n a n iδ δ
=

= − −∑  (1) 

In the next step, offset value adds to )(ˆ nδ  and then the log-gain limiter clips the level 
of it, if the log-gain value is below 0 dB or above 60 dB. Finally, in inverse logarithm 
calculator the value of log-gain in logarithmic domain is converted to linear domain. 

To predict the gain by ANN, the scaled excitation vector, e(n), is fed as the input 
pattern to network and the excitation gain, σ(n), is assumed as the output of network. 
The codebook search module, searches through 1024 candidate codevectors in the 
excitation vector quantization (VQ) codebook and finds the index of the best 
codevector. Indeed, in excitation VQ codebook, the best shape codevector and the best 
gain value which are extracted from codebook module are multiplied by each other to 
get the quantized excitation vector y(n). Then, this vector multiplies by gain and results 
the scaled excitation vector e(n). Excitation gain is the output of backward gain 
adaptation block. The dimension of scaled excitation vector is 5. 

3. Hybrid GA-Neural Models 

The genetic algorithm is a method for solving optimization problems based on 
natural selection, the process that drives biological evolution. The genetic algorithm 
repeatedly modifies a population of individual solutions. At each step, the genetic 
algorithm selects individuals randomly from the current population to be parents and 
uses them to produce the children for the next generation. There are several methods for 
selecting parents such as stochastic uniform selection, remainder selection, roulette 
selection and tournament selection. Fig. 3 shows the flowchart of GA algorithm. The 
details of GA-neural models for gain prediction are reported in the following. 

3.1 GA-Elman/MLP Gain Predictor 

Elman NN is a type of partial recurrent networks with an additional feedback 
connection from the output of the first layer to its input layer [25-26]. In this study, 
Elman has tangent sigmoid ('tansig') neurons in its two hidden layers, and linear neurons 
in its output layer. In this work, the optimized number of neurons in hidden layers is 
selected by GA. The fitness function measures the quality of the solution in GA and is 
application-dependent. In this application, the fitness function in Elman and MLP neural 
model simulations is chosen as follows [27]: 

2)(

1

MSE
F =  (2) 
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At the beginning, the generated values by fitness function are not suitable for 

selection process of patterns. So, fitness scaling is necessary to map those raw values 
into a new suitable range for the selection function. The range of scaled values affects 
the performance of genetic algorithm. In this study, "Rank" fitness scaling function is 
used to remove the effects of raw scores spread. To create the next generation, GA uses 
elite children that are individuals with the best fitness values in the current generation. 
In our simulations, population size is assumed to be 40. Two elite children, 26 crossover 
children, and 12 mutation children are used. It is noted that the fraction of individuals 
that is used in crossover process is set to 0.7. The Gaussian function is used as the 
mutation function. The amount of mutation is decreased at each new generation 
(proportional to the standard deviation of Gaussian distribution). "Shrink" parameter 
determines the rate of this decrement. The standard deviation of Gaussian distribution is 
decreased linearly until its final value reaches to (1–Shrink) times of its initial value at 
the first generation. The value of "Shrink" parameter is set to 1 in our simulations. 
Several values of population size and different types of selection, crossover and 
mutation functions are used in our investigations. By using the “Rank” scaling function, 
some of the best results for the optimized number of nodes in hidden layers, in terms of 
fitness value (F), are listed in Table 1. 

The initial weights and biases of Elman NN are optimized by GA, too. The 
optimized weights and biases of first hidden layer nodes for the 8-10-1 topology are 
reported in Eq. 3 and Eq. 4, respectively. 
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3.2962-  1.0640-  0.2342     2.9232-  1.4636-

0.1191    2.5749-  3.1049-   1.8240-  2.6184-

2.9801-  1.2756-  3.7061-   1.3547-  1.9257  

3.6926    2.0304-  2.2861-   3.5332    3.1232  

1.5062-  3.6416    0.0103-   1.2600-  0.6071  

1.4329     1.2148    0.7900     1.3513-  1.1511  

2.7510-   1.3426    0.3761-  0.0769-  0.9202  

1.1239-   0.1782-  2.8673    1.3928    1.0877  

_GAoptW  (3) 

 

[ ]3.8561-  0.7751  1.2479  2.4241  2.7906  3.0072-  2.8676-  2.3218-_ =GAoptB  (4) 
 
The training parameters of Elman network in hybrid GA-neural model are listed in 

Table 2. It is noted that the Elman and MLP networks are simulated in Neural Networks 
Toolbox of MATLAB software. The training dataset includes 40,000 vectors of fifteen 
male and twenty female speakers with different accents. The test dataset includes 9,000 
vectors, as well. 

The optimized number of hidden layers nodes and initial weights and biases for MLP 
are determined by GA, too. The training parameters of MLP network in hybrid GA-
neural model are listed in Table 3, as well. 

3.2 GA-Fuzzy ARTMAP Gain Predictor 
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Until now, many types of adaptive resonance theory (ART) family networks have 
introduced and used. In general, this family of neural networks include ART1, ART2 
[28], ART3 [29], ARTMAP [30], Fuzzy ART [31], ART-EMAP [32], Distributed 
ARTMAP [33], Boosted ARTMAP [34], Fuzzy ARTVar [35], µ_ARTMAP [36] and 
Fuzzy ARTMAP [37]. 

Fuzzy ARTMAP is the neural network architecture for incremental supervised 
learning of recognition categories and multidimensional maps in response to arbitrary 
sequences of analog or binary input vectors. It achieves a synthesis of fuzzy logic and 
ART neural networks by exploiting a close formal similarity between the computations 
of fuzzy method and ART category choice, resonance and learning. ARTMAP networks 
consist of two ART1 networks, ARTa and ARTb, bridged via an inter-ART module. An 
ART1 module has three layers: input layer (F0), the comparison layer (F1), and the 
recognition layer (F2). Fuzzy ARTMAP is a natural extension to ARTMAP that uses 
fuzzy ART instead of ART1 modules. 

The operation of fuzzy ARTMAP is affected by two network parameters, the choice 
parameter, α, and the baseline vigilance parameter, ρ. Both of these parameters take 
values in the interval [0,1] and affect the number of nodes created in the category 
representation layer of fuzzy ARTMAP. Another important parameter is the leaning 
rate, β. In this study, the optimized values of these three parameters are determined by 
GA to have the best correct identification rate. 

The dataset which is used to train the Elman and MLP networks is not suitable for 
fuzzy ARTMAP and some preprocessing is needed.  Fuzzy ARTMAP requires input 
patterns to be presented as vectors of floating point numbers in the range [0, 1]. 
Therefore, the training and test datasets need normalization. The value of excitation gain 
in G.728 recommendation is in the range of [0 dB,60 dB]. In our fuzzy ARTMAP 
structure, this interval is divided to 540 classes. So, the resolution of this classification 
is about 0.1 dB. The fitness function in fuzzy ARTMAP simulation is chosen as 
follows: 

2)( pcF =  (5) 
where pc is the correct classification rate. The population size and 

selection/crossover/mutation functions that result the best fitness value are reported in 
Table 4. The specifications of fuzzy ARTMAP-based gain predictor in our simulations 
are reported in Table 5. 

4. Hybrid PSO-Neural Models 

In PSO, particles move in a multidimensional search space. In this algorithm, each 
particle has a velocity and a position as follow: 

))(())(()()1( 21 kxGkxPkvkv iiiiiii −+−+=+ γγ  (6) 
 

)1()()1( ++=+ kvkxkx iii  (7) 
where i is particle index, k is discrete time index, vi is velocity of ith particle, xi is 

position of ith particle, Pi is the best position found by ith particle (personal best), G is 
the best position found by swarm (global best). γ1i and γ2i are random numbers in the 
interval [0,1] applied to ith particle. In our simulations, the following equation is used 
for velocity [20]: 

[ ] [ ]))(())(()()()1( 2211 kxGkxPkvkkv iiiiiiii −+−+=+ γαγαφ  (8) 
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in which φ  is inertia function, α1 and α2 are acceleration constants. 

4.1 PSO-Elman/MLP Gain Predictor 

The number of nodes in hidden layers, and the initial weights and biases of Elman 
and MLP neural models are selected by PSO algorithm in this section. In our 
simulations, the maximum particle velocity is set to 2, population size is 20, and 
acceleration constants are set to 2. The inertia is taken as a decreasing linear function 
from 0.9 to 0.2. So, the influence of past velocity becomes smaller. The training 
parameters of Elman and MLP networks in hybrid PSO-neural models are listed in 
Table 6 and Table 7, respectively. 

4.2 PSO-Fuzzy ARTMAP Gain Predictor 

The optimized values of learning rate, choice and vigilance parameters, as three 
important parameters in fuzzy ARTMAP, are determined by PSO algorithm to have the 
best correct identification rate in classifier. The specifications of this neural gain 
predictor in our simulation are listed in Table 8. 

5. Experimental Results 

A 16 kbps LD-CELP coder, based on the ITU-T G.728 recommendation, is 
implemented in this work [1]. Farsi speech data files of FARSDAT [38] are used as 
dataset in this study. The performance comparison of Elman-based and MLP-based gain 
predictors, with optimized parameters by GA or PSO, shows that MSE in Elman is 
lower than MLP. The number of training epochs in Elman is lower than MLP, too. On 
the other hand, the number of epochs and training time of fuzzy ARTMAP are the 
lowest ones. The execution time of proposed hybrid models, calculated for 1000 frames 
of speech, is also compared to traditional backward gain adaptation, based on G.728, as 
the reference. This comparison shows a reduction in execution time, when using each of 
GA/PSO-neural hybrid models. However, GA-fuzzy ARTMAP hybrid model has the 
lowest execution time (Fig. 4). 

The performance of proposed optimized-neural gain predictors, in terms of 
segmental signal-to-noise ratio (SNRseg) and mean opinion score (MOS), is also 
compared with a traditional G.728 [4, 5]. In this way, the SNRseg and MOS of traditional 
implementation are 18.45 dB and 3.91, respectively [5, 39]. The comparison of SNRseg 

and MOS of proposed hybrid models with traditional G.728, in terms of relative values, 
is shown in Fig. 5. This comparison shows that an average of 0.6 dB improvement in 
SNRseg and also an improvement of 0.3 in MOS are achieved, when using GA/PSO-
Elman/MLP hybrid models. However, an average of 0.18 dB reduction in SNRseg and 
0.4 reduction in MOS are experienced when using GA/PSO-fuzzy ARTMAP hybrid 
models. 

6. Conclusions 

In this paper, backward gain adaptation module of G.728 speech coder was replaced 
by three candidate neural gain predictors with optimized structures and parameters by 
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employing GA and PSO algorithms. Elman, MLP and fuzzy ARTMAP were the 
candidate neural models in this work. Empirical results showed that gain prediction by 
optimized-GA/PSO Elman and MLP neural networks, improved the SNRseg and MOS 
as compared to traditional implementation of G.728. On the other hand, fuzzy 
ARTMAP-based gain predictor reduced the computational complexity noticeably, with 
no significant degradations in SNRseg and MOS. 
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Fig. 1 Block diagram of LD-CELP encoder [1] and the proposed modification 

 

Fig. 2 Block diagram of backward gain adaptation in LD-CELP [1] 
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Fig. 3 GA flowchart 

 
 

 
 

Fig. 4 Relative execution time of proposed models as compared to traditional implementation of gain predictor 
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Fig. 5 Relative SNRseg and MOS of proposed models as compared to traditional G.728 implementation 
 

Table 1 Optimized number of hidden layer nodes in Elman NN 

 
 

Table 2 Training parameters of Elman network in hybrid GA-neural model 

Parameter Value or type 
Train function 'trainlm' 

net.trainParam.goal 0.01 

Number of nodes in layers 8-10-1 

Transfer function of layers 'tansig', 'tansig', 'purelin' 

Number of epochs 1500 

MSE on the test data 0.01155 
 
 

Table 3 Training parameters of MLP network in hybrid GA-neural model 

Parameter Value or type 

Train function 'trainlm' 

net.trainParam.goal 0.01 

Number of nodes in layers 11-9-1 

Transfer function of layers 'tansig', 'tansig', 'purelin' 

Number of epochs 2000 

MSE on the test data 0.01308 

  

Population 
size 

Selection 
function 

Crossover 
function 

Mutation 
function 

Number of 
hidden 

layer nodes 
F(×102)

40 Uniform Heuristic Gaussian 8-10 49.43 
40 Roulette Scattered Gaussian 9-10 47.50 

40 
Stochastic 
uniform 

Scattered Gaussian 10-9 42.90 

20 
Stochastic 
uniform 

Intermediate Uniform 10-8 37.68 
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Table 4 GA specifications in GA-fuzzy ARTMAP hybrid gain prediction 

Population size Selection function Crossover function Mutation function F(×102) 

40 Stochastic uniform Scattered Gaussian 81 

Table 5 Fuzzy ARTMAP gain predictor specifications, GA-optimized parameters 

Specification Value 
Learning rate β 0.9846 

Vigilance parameter  ρa 0.9738 
Vigilance parameter  ρab 0.3802 

Choice parameter α 0.9889 
Number of F0 nodes 10 
Number of F1 nodes 301 
Number of F2 nodes 301 
Number of epochs 1 

Correct identification rate 90% 

Table 6 Training parameters of Elman network in hybrid PSO-neural model 

 

 

Table 7 Training parameters of MLP network in hybrid PSO-neural model 

Parameter Value or type 

Train function 'trainlm' 

net.trainParam.goal 0.01 

Number of nodes in layers 11-10-1 

Transfer function of layers 'tansig', 'tansig', 'purelin' 

Number of epochs 2000 

MSE on the test data 0.01174 
 

Table 8 Fuzzy ARTMAP gain predictor specifications, PSO-optimized parameters 

Specification  Value 
Learning rate β 1 

Vigilance parameter  ρa 0.8008 
Vigilance parameter  ρab 0.3001 

Choice parameter α 1 
Number of F0 nodes 10 
Number of F1 nodes 621 
Number of F2 nodes 621 
Number of epochs 1 

Correct identification rate 95% 
 

Parameter Value or type 

Train function 'trainlm' 

net.trainParam.goal 0.01 

Number of nodes in layers 11-11-1 

Transfer function of layers 'tansig', 'tansig', 'purelin' 

Number of epochs 1200 

MSE on the test data 0. 01115 


