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Abstract 
This article presents a new subspace-based technique for reducing the noise of 

signals in time-series. In the proposed approach, the signal is initially represented 
as a data matrix. Then using Singular Value Decomposition (SVD), noisy data 
matrix is divided into signal subspace and noise subspace. In this subspace division, 
each derivative of the singular values with respect to rank order is used to reduce 
the effect of space intersections on altering the structure of important information in 
the signal. On the other hand, since singular vectors are the span bases of the 
matrix, reducing the effect of noise from the singular vectors and using them in 
reproducing the matrix, enhances the information embedded in the matrix. The 
proposed technique utilizes the Savitzky-Golay low-pass filter for noise attenuation 
from the singular vectors. The enhanced matrix is finally transformed to a time-
series signal. The obtained results in this research indicate that the proposed 
method excels the other existing time-domain approaches in noise reduction. 
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1. Introduction 

 
Noise reduction techniques have wide applications in signal processing [1]. There are 

several methods for noise reduction and they can be categorized in time, frequency and 
time-frequency domains [2-4]. Some of existing methods can reduce the noise with a 
prior assumption about the signal. In other words, these methods are suitable only for 
specific applications and conditions. For example, in using a Low-Pass Filter (LPF), it 
is assumed that the noise is placed at the high frequency regions of the noisy signal. 
Common low-pass filters, such as those using the convolution operator, may shift the 
signal in time. In addition, these filters may slightly change the shape of the signal and 
this may be a drawback. 

 The Wiener filter is another important approach that is widely used by researchers 
and in technical applications for noise reduction in time domain. This filter is always 
able to reduce the noise embedded in a signal. However, the amount of noise reduction 
is proportionally accompanied by signal degradation [5]. In other words, Wiener filter 
can be used to reduce noise in a signal if the SNR is high enough (usually higher than 4 
dB) [6]. 

When SNR in a signal is low, using Wiener filter may just transform the noise from 
one form to another. This is a discouraging factor in choosing the Wiener filter for noise 
reduction. 



 

A Novel Noise Reduction… Amin Zehtabian & Behzad Zehtabian 
 
 

54 

The authors in [6], developed a time-frequency based approach for reducing noise 
from a signal’s time-series. This technique is based on the singular value decomposition 
of a matrix associated with the time–frequency representation of the signal. Indeed, in 
this approach the time-frequency distribution is used as a tool for representing the signal 
in a matrix. Then, this approach separates noise subspace and signal subspace using 
singular values of data matrix as criteria for subspace division. This time-frequency 
based technique has a good result for reducing noise in stationary and nonstationary 
signals. However, there are two deficiencies in the time-frequency based approach for 
noise reduction. A high computational time is required for representing signal in the 
time-frequency domain. In addition, some time-frequency distributions may not be 
synthesized to the time-series. Recently, time-domain based approaches for noise 
reduction have received a considerable attention among researchers [1, 4]. These 
techniques construct a data matrix in time domain (often the Hankel matrix) which 
represents the noisy signal. In this paper, the data matrix is divided into signal subspace 
and noise subspace using the SVD-based approach introduced in [11]. Then the 
Savitzky-Golay low pass filter is utilized to reduce noise from the singular vectors. The 
noise-reduced singular vectors are then used to reconstruct the matrix and eventually 
this noise-reduced matrix is used to extract the time-series, representing the noise-
attenuated signal.  We show that the SNR value is considerably improved in this new 
time-series signal. Results in this paper indicate that the proposed method has a better 
performance in noise reduction compared to other existing time-domain based 
approaches. 

2. The Subspace Division Based Approach 

In this paper, we suppose that the clean signal has been corrupted by an additive 
white Gaussian noise: 

nsn WXX +=  (1) 
 
Where nX , sX and nW  respectively denote noisy signal, clean signal and white 

Gaussian noise. For  ( ) N,...,1i,iXn =  representing the noisy signal, the Hankel matrix 
is constructed as follows: 
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The singular value decomposition of matrix H  with size QP ×  is of the form 

TVUH Σ=  where rPU × and rQV ×  are orthogonal matrices, and Σ  is a rr ×  diagonal 
matrix of singular values with components jiif0ij ≠=σ  and 0ii >σ . Furthermore, it 
can be shown that 02211 ≥≥≥ σσ . The columns of the orthonormal matrices U and V 
are called the left and right singular vectors respectively. 
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To enhance the information embedded in the Hankel matrix, first the data matrix is 
divided to signal subspace and noise subspace. Then, the singular vectors of the signal 
subspace matrix are filtered to reduce the effects of noise from them. Finally, the 
enhanced data matrix is reconstructed and the noise-reduced signal is extracted. 

 
The subspace separation can be expressed as below:   
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where sΣ  and nΣ  represent the clean signal subspace and noise subspace, 

respectively. As can be seen from equation (4), we must determine a threshold point in 
the Σ  matrix where lower singular values from that point can be categorized as noise 
subspace and hence should be set to zero. To determine this point, let plot the singular 
values of Σ  matrix for a given noisy signal, respect to their indexes (see Figure 1). 

 

 
 

Figure 1. Normalized singular values of the Hankel matrix associated with a noisy signal. 
 
A break point can be seen clearly in Figure 1, where slop of the curve changes 

drastically. This threshold point can be determined by calculating derivation of the 
curve in each point. Our research shows that the noise subspace is mainly related to 
those singular values that are lower than this threshold point. Thus, we suggest setting 
these singular values to zero for space division.  

 It can be inferred from our experiments that by merely filtering the singular values, 
some noisy data will still be available in the signal subspace. Thus we can filter them 
for more noise reduction. In this study, singular vectors are treated as time-series. To 
reduce the effect of noise on them we use the Savitzky-Golay smoothing filter. In this 
approach a polynomial of degree d is fitted to wN  data points (frame size or window). 
Filtered singular vectors can be obtained as follows: 
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( ) PiUFU siei ,...,1, ==  (6) 
( ) QiVFV siei ,...,1, ==  (7) 

 
where ( )⋅F  is the Savitzky-Golay smoothing filter and P Q,  indicate the size of the 

Hankel matrix.  In the proposed noise reduction approach, the amount of noise 
reduction depends on the Hankel matrix size ( L ), the degree ( d ) and frame size ( wN ) 
of the Savitzky-Golay filter. In this equation, L  indicates the optimum number of rows 
of the Hankel matrix H . 

We define a cost function to obtain a better noise reduction performance. This 
function depends on the above-mentioned parameters: 
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(8) 

 
At the right side of above equation, the first term indicates the Euclidian distance 

between the enhanced signal and the noisy signal. This distance is multiplied by a 
weight )1( α− . The second term indicates smoothness of the enhanced signal. The 
parameter α  is a factor which determines the smoothness and must be between 0 and 1. 
In this paper it was experimentally set to 0.3; we will minimize this cost function using 
the genetic algorithm [10]. 

The enhanced data matrix is then obtained using: 
 

T
esee VUH Σ=  (9) 

where the enhanced signal eX is extracted as follows: 
 

( ) ( ) ( ) ( )[ ]QPHHQHHX eeeee ,1,2,11,1 =  (10) 
 

3. Simulation Results 
 

In this section, several experiments have been carried out on multi-component 
periodic signals as well as linear FM (LFM) signals to show the considerable 
performance of the proposed approach. These synthetic signals are corrupted by 
additive white Gaussian noise and the results of using each method is described in 
following. 

3.1- Multi-component signals 

( ) ( )Let  0.39sin 2 0.75cos 2 (7 )
   0.93sin(2 (2 ) ) 0.69cos(2 (4 ) )

x ft f t
f t f t
π π

π π

= +

+ +
 (11) 

 
represents a clean multi-component signal where Hz23f =  and the sampling 

frequency is KHz5.2fs =  in this experiment. The number of samples is 600N = .  
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Results of applying different approaches on this signal are shown in Figure2. As the 
figure shows, the convolution-based low-pass filter (LPF) can considerably reduce the 
noise, but with the cost of shifting and slightly changing shape of the signal. This 
deformation is proportional to the filter window length. Although there is no such 
deficiencies in using the Wiener filter, the noise attenuation level is less than the LPF, 
especially at lower SNRs (see Figure3).  
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Figure 2. Comparing performance of noise 
reduction techniques on multi-component 

signals. From top to bottom: clean signal, noisy 
signal, output of LPF, Wiener filter, and the 

proposed approach with SNR=5 dB. 

 Figure 3. Comparing performance of noise 
reduction techniques on multi-component 

signals: from top to bottom clean signal, noisy 
signal, output of LPF, Wiener filter, and the 

proposed approach with SNR=2 dB. 
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Linear FM ( SNR=5 )
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Figure 4. Comparing performance of noise 
reduction techniques on LFM signals: from top 
to bottom clean signal, noisy signal, output of 

LPF, Wiener filter, and the proposed approach 
with SNR=5 dB. 

 Figure 5.  Comparing performance of noise 
reduction techniques on LFM signals: from top 
to bottom clean signal, noisy signal, output of 

LPF, Wiener filter, and the proposed approach 
with SNR=2 dB. 
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3.2- LFM Signals 

Now we implement the different methods on linear FM signals considered as 
nonstationary signals. The same as previous experiment the sampling frequency is 

KHz5.2fs = and the number of samples is 600N = . Results of this experiment are 
shown in Figure4. Similar to the previous experiment, the LPF shifts and slightly 
deforms the signal. This deformation gets worse when SNR is reduced (see Figure5). 
This experiment indicates that the proposed approach is suitable for a broad band of 
signals. 

The results of Monte-Carlo simulation on 100 realizations of different SNR values 
for the multi-component and the LFM signals are respectively shown in Table 1 and 2, 
where we have compared these three methods by two famous criteria: The signal to 
noise ratio and the Euclidian distance. These results attest that the proposed approach 
has a proper performance compared to the other existing approaches in noise reduction. 

 
 

Table 1. The Monte-Carlo simulation on 100 realizations of different SNR values for 
the pre-mentioned multi-component signal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. The Monte-Carlo simulation on 100 realizations of different SNR values for 
the LFM signal. 

 
 

Method Initial 
SNR (dB) 

Final 
SNR 

Initial Euclidean 
Distance 

Final Euclidean 
distance 

5 12.8588 303 118 
2 0.2247 428 782 
1 -4.0039 490 980 

 
Wiener 

0 -14.022 566 2448 
5 7.8663 303 514 
2 3.8812 428 723 
1 1.011 490 790 

 
LPF 

0 0.1428 566 877 
5 16.0560 303 95 
2 14.0223 428 116 
1 11.1012 490 161 

 
Proposed 
approach 

0 7.8450 566 282 
 

Method Initial SNR 
(dB) 

Final 
SNR 

Initial E.  
Distance 

Final E. 
distance 

5 12.6322 288 156 
2 0.6492 396 659 
1 -4.6039 455 1004 

 
Wiener 

0 -43.755 514 8922 
5 7.8511 288 686 
2 4.3301 396 818 
1 2.8735 455 855 

 
LPF 

0 1.5648 514 898 
5 18.0638 288 67 
2 13.7242 396 111 
1 11.1488 455 153 

 
Proposed 
approach 

0 9.9826 514 183 
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4. Conclusion 

The technique proposed in this paper is a novel approach for enhancing noisy signals 
in time domain. In this paper the noise subspace is initially eliminated from the signal 
subspace using the SVD-based technique. Then the singular vectors are filtered utilizing 
the Savitzky-Golay smoothing filter. The dimensions of Hankel matrix representing the 
noisy signal, the polynomial degree and window size of the Savitzky-Golay filter are 
determined using genetic algorithm. Results in this paper indicate the considerable 
advantages of the proposed approach over the existing approaches for noise reduction in 
time domain.  
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