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Abstract

Extension of inteturn fault in windings ofPMSM can damage all partof
electrical systems, and in some cases in sensitive applications may lead to
irreparable events. Identification of such small faults at incipient steps can be so
helpful to protect entire part of electrical system. In this papeelligent protection
system is designed which is made by two major parts. In the first part of intelligent
protection system #learest Neighbor classifier is used agletecting system to
discriminate intefturn fault from normal condition, phase toase fault and open
circuit condition and also to detect faulty phase, simultaneity. After that ifiatar
fault is happened, second part of proposed system which is based on an ANN
Trained with Improved Gravitational Search Algorithm determines the atnoiu
fault. IGSA is presented to improve the performance¢hefproposed protection
system in this paper. Obtained results show that both part of intelligent proposed
and intelligent protection system can do their best performance. It can successfully
detect interturn fault and follow it and predict amount of this fault.

Keywords:populationoptimizationalgorithm, gravitational search algorithmRMSvalue
of current, negative sequencecurrent, inter-turn stator winding fault,
permanenmagnetsynchronous motor

1. Introduction

The historyof the identificationfaults in electric machines is as old as the electric

machines. Initiallymanufacturerand consumers relied osimple protection systems

such as Over Current, Over Voltage, Edftultand etcBut today,since thedemands

for these machines have been increaged in otherhandthey are usedn critical
applications it doesseemnecessary to design thiast andaccuratesystems that can
quickly and with minimum delay detediaults in early steps [1]. Howevefault
detection methodsan generallybe classifiedinto two major groups:classicaland
intelligent Although classic methods show excellent performance in protection systems,
intelligent methods cover unpredicted events and cdend themselves for future
considerations. It is worth noting that there are numerous applications that classical

63


mailto:smrazavi@birjand.ac.ir

Intelligent Determining Amount of M. Taghipourgorjikolaie, S.M. Razavi, M.A. ShamsiNej

methods are used along with intelligent methods for feature extraction with high
recognition rateThe most common classicalethodsusedto identify electrical faults
aremethods based on frequency analysish asshorttime Fourier transform(STFT)

and wavelettransform [25]. In [5], the faultis detectedin induction motor using
wavelet transformsand filter bank with a narrow width. Note, howeverthat these
approachesavehigh computationaktost[6] andcertainlimitations such as impossible
analysis ofcombinedsignals, they cause reduspeed and accuracy of protection
system These methods are alssedto identify the fault in gnchronousmachines
especiallypermanent magnetynchronous moto(PMSM) [7-9]. In papers[10] and

[11], one of the conventionalanalytical approaches namédbtor Current Signature
Analysis MCSA) hasbeen used to deteiciter-turn fault inthePMSM Motor. Note that

this methodsignal processing doneon the motor current usinglifferent methods and
necessary informatiois extracted But it is important that the accuracy of this method
depends on several factors including: vehicle speed should beafixikihown; it must

be measured precisely in induction Slip machines, and load should be preferably fixed
[11].

As we noted previously, due to the weaknes
willingness has increased to use the heuristic and intetligethods. Different types of

neural networks are one of these intelligent methodsl§]2In [16] neural network is

used to isolate the input current from internal faults. It is valuable to mention that this

article has used common neural network to jgpara suggested method with RBF one

that used the Principle Component Analysis (PCA) to extract data required for training
network.

It is noteworthy that in this study in additicb fault identification, quantitative
evaluation of faults in winding is artwr issue that is more important to us. For
example, we want to know how percentage of a stator winding of PMSM motor is
damaged and how its percentage is healthy, and how long the motor can continue to
work in this situation (fault conditions). At firgt,may seem unnecessary, but when this
type of motor is used in critical applications, its importance increases. One of the
articles in this issue is the paper [17]. In this paper, Adaptive Newzay inference
system known to summarize ANFIS has beerduseorder to determine the winding

fault percentage of a synchronous generator. As noted in this paper, stator winding fault
in synchronous generator seems to be very serious, because winding fails relate to
currents higher than the fault and cost of rteaimng directly. If this type of fault
doesndét r e mmayecauperirega@bleldgmagbe question that arises here

is that which one leads to lower cost: design of an intelligent system for qualitative and
guantitative evaluation of Inteéurn stator winding fault, replacement of the motor
winding or replacement of the generator?

In this paper, permanent magnet synchronous motor is simulated under fault conditions
in the SIMULINK, using SIMPOWER elements. When data required to train the system
in different condition has been extracted, minimum distance classifiealeo NN
classifier) is used as a tool to identify Intarn stator winding fault. The system is also
designed in such way that if occurred fault is an thtem stator windingone, system
immediately will be placed in circuit and finds out the fault percentalgis system is
based on neural network trained by intelligent optimization algorithms.
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In the rest of this paper, improved version of Gravitational Search Algorithmhwgic
one of the contributions of this paper is presented in secti@Qion 3 shows the
proposed training method for ANNBimulation and discussion on obtained results are
presented in section 4. And finally conclusion is presented in section 5.

2. Improved Gravitational Search Algorithm (IGSA)

One of the main issues that has attracted the experts, researchers and engineers is
finding an efficient and robust algorithm to solve the optimization problems.
Gravitational search algorithm (GSA) is a pagidnbased heuristic search algorithm
that has been proposed in 2009 by Mrs. RasHdéuls algorithm uses gravity rules and
concepts. In this algorithm, each particle will attract other particles due to gravity. At
GSA agents are considered as objectsthanl performances are defined by their mass
and computed using the fitness function. Position of any object (agent) corresponds to
the solutions of problem. All objects are attracted to each other by gravity and the
heavier mass has higher absorption amahan the rest of the objects as shown in
Figure 1 (a) which means it can attract other masses. Due to the forces of the other
elements (objects) imposed on agent; this object feels the space around itself, and
gravity force acts as a means of infation transferring. Thus, heavier objects are
effective elements and move more slowly than lighter ohjdé¢tis condition rescues
algorithm to be trapped in a local optimum in search duration for the optimal solution
[18].

0 0 Global best position

(a) (b)
Figure 1. movement of againgg) in GSA, (b) in IGSA

Since the gravitational search algorithm has no memory, some applications are not
affected and cannotP reach to opti mal sol u
algorithm solves this problenin this study it has been dory inspiring of PSO
algorithm. Like PSO algorithm, a&:indicates the best answer obtained by each agent
and a Gestindicates the best answers achieved by all parameters so far, these values are
defined for GSA and increase its velocity as shown in(EQ Equation (2) shows the
movements of agents in solution space.

vl (t+1) =rand3 v (t) + ' (t +1) +rand3 C; 3 (X(t) - Xype) +rand® C, 3 (X(t) - Xgpes) (1)
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x!(t+1) w7t B xHt) @)

As it shown inFigure 1, adding this type of memory allows agents in the G8A
exchange information among each other in every repetitinehalso become aware of

the best situation from the start of the search until now and the best obtained answer, so
they can remain in better condition.

3. Neural network training using improved gravitational search algorithm

The human brain is one of the gtest wonders of creation. This wonderful creation
is able to process information fast with high efficiency by neural networks composed of
large number of neurons. The human brain has the ability to be aware of his
surroundings and performance that namikd memory. Neural networks are very
complex, nonlinear systems with a high degree of freedom that use different topologies
to process information. So, in the last half century, the scientists have done many efforts
to promote theory of different neural metrks. Consequently, the result of all efforts in
the past and present years leads to develop artificial neural networks that are
mathematical modsbf real neural networks.

Various methods have been proposed for training the neural networks that are
iterative based and use the first and second derivatives in the calculations. Several
guestions arise, are such methods the best training methods? Are there ways to reduce
the computational cost? And questions like these that highlight the problems in these
methods. If we look at the problem of training neural networks well, we can consider
them as optimization applications. What is the aim of training the neural network
(however, we discuss in this section the education with monitoring)? The goal is to
updatethe network weights, so that the neural network output is similar to the target
output or in other words our desired output or optimal output. In order to provide a
better means, let's examine a simple exanfjptpire2 shows a simple perceptron.

Eq. (3)is mathematical modelf the networkshownin Figure2.
f =gl@w;x) (©)
i=1

Where wis network weights, ix input network, bapplied bias and g activity function

that has been described previously. According to Eq. (35 gonstant, g is also a

function, and wand b are variables, therefoiie,can be said that changes of output
value are related to changes afamd b, it neans that output of the artificial neural
network can be a function of the weights and biases.

Figure 2. A simple structure of percepteron
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f =y(w,b) 4

We assume that the optimal point of f Eynction is the target output, so the set of
different answers can be considered faramd b, the best solution between them
calculate optimal value of f (.) functiods we have seen, a neural network training
problem is an optimization problem and it can be addressed by using mentioned
optimization algorithms (training ANN). As shown kigure 3, training neural network
optimization algorithm can be divided into several parts.

Calling input and target data matrices

A 4

Calling weights and biases matrices

Separ ating weights and biases of each
layer

I

Applying structure of neural network
accor ding to called weights and biases

A 4
Calculating distance between tar get
output and actual output

A 4

Calculating M SE

Figure 3. The flowchart of what happens in fitness function when is called

First Phase)to determine initial parameters:

At this stage, the #ficial neural network structure, initial parameters and control
parameters of populatidmased algorithms used for incipient planning are set. The
number of layers and neurons in each layer must be determined to identify the structure

of artificial neurd network. To create this neural network, feed forward topology is
used; this topology doesndét need any <cl ass
the multilayer feed forward neural network. After determining the structure of the
neural network, sed algorithm parameters should be adjusted, but dimensions of
problem are the same for all the algorithms, or in other words the dimensions of
answers that depend on number of synaptic weights and biases in neural network.
Calculating the number of weighatnd MLFFNN biases is expressed by an example,
suppose we have a MLFFNN that has two hidden layers and one output layer. The
number of neurons in | ayers |1, 'l and |11
number of weights and biases is caitall using the Eq. (5).

W =[(thenumbewof InputData)® g+b]+[g3 b+b,]+[b3 g+b,] 5)

And finally, the initial position of the particles (agents) in the solution space should be
chosen randomly and each of them has a W dimensions.
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Second Phasef\pplying the populatiofbased algorithm

In this stage, populatiebased algorithm is used to train the MLFFNN neural network.
First, fitness function can be MSE which is called, howewdrat happens in this
function is not a simple relationship but it is complete process as shown in flowchart
(3):

As can be seen, first, the matrix of input data and target output is called. Then, the
weights and bias matrices will be called that is shawiag. (6) as an example.

\Nl :[p]J p2""" pq" pq+11"’ pq+1+b1q1""’pn] (6)

Here, wis the position of " in the solution space. In other words, the vector of &Y. (
reflects the values of weights and biases of MLFRiNvork. Then, wmatrix must be
broken to sub matrices to form the neural network structure-n@ibces show the
weights of a layer and its biases, for exampletoPPs related to the synaptic weights

between input and hidden layers and. ko Posiing related to biases of the first layer.
Network structure can be formed after separation of the sub matrices that can be seen in
the Egs. (7) to (12).

S =W, [ID] +b )
S, =log sig(S) ®)
Z,=W,3[S)]+h, 9)
Z, =log sig(Z,) (10)
0, =W,3 [Z,] +b, D
0, =log sig(0)) (12

In the above equations, ID is input data matrix, Wps and W, are weights between the

input, weights between the first layer and second layer and weights between the second
and third (or the output layer) layers, respectively.th and b are biases of first,
second and third layers, respectively. For examplenaig) activity function is used.
Finally, value of MSE function is the difference between actual output which hepe is O
and target output. EQ. (14) shows how to calculate this amount.

a ©,-Toy

MSE =MXN (13
M 3N

Here TO is target output, M and N are the dimensions of the O2 and TO matrices.
Thethirdstageu pdat e agentsd information

After assessment of possible answers, the algorithm péessrsuch as speed, position,
etc., should be updated to obtain efficient solutiorthérfollowing stages.

68



Journal ofAdvances infComputerResearch (Vol. 6, No. 1, February 2015) e

Fourth Stage)stopping criteria
As we know, for all the iterative based algorithms, the stopping criteria are considered,
these criteria may keero or the minimum value of MSE or algorithm iterations.

4. Simulation and results

In order to demonstrate the ability of the proposed approach presented in this paper,
these methods were tested under different conditions. But first it is necessary to
simulate PMSM model under normal and fault conditions. After the PMSM has been
designed by considering the parameters and ensuring the accuracy of the simulations in
MATLAB/SIMULINK, waveform or in other words, necessary information is extracted
from the notor. Since presented methods are intelligent, we require training data
obtained by sampling. It means that Iatiem stator winding fault with different fault
percentages is simulated under controlled conditions and training data are selected
randomly. Ater training, the proposed methods are used in simulation as intelligent
detective system to detect Intern stator winding fault and calculate the amount of

these faults intelligently.
4.1 Simulation of PMSM under Interturn stator winding fault

The elemats found in the SIMPOWER system library were used in order to provide
more accurate and realistic simulation in this study. As showigure4 (b), a three
phase mutual inductance considering modéligtire4 (a) completely, is used to model
a PMSM uner normal conditions.

I*al

— ED

I*b1

®
ot
I*cl

Mutual abc

(a) Equivalent iecuit of (b) Mutualinductanceelement ifSIMPOWER systentibrary used to
PMSM undethealthyconditions model PMSM under healthgondition

Figure 4. Simulation of PMSM under healthy condition

Figure 5 shows overview of the PMSM simulation (Drive Control System) that is
identical in all circumstances, whether in normal conditions or under faults conditions.
As can be seen iRigure5 after the transformation of the three phases current of the abc
doman to the dg domain, these obtained curremtsused to compare in the entrance,
and finally the motor is set up and controlled by obtaining thand 4 voltages and
their application in PWM.
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4.1.1 Equivalent circuit of the motor under fault conditions.

As already mentioned, the more accurate and efficient model can result the better fault
identification and the more accurate designing of fault diagnosis system. Electrical
faults are the most common faults that may occur in stator winding of PMSMs. Usually
windings faults relate to insulation defects. But experts believe that the origin of the
electrical faults that often occur in the stator winding is Huen stator winding fault
occurring in every turn of winding that grows and eventually leads to faeke [19].

So, importance of inteturn stator winding fault identification in every turn of winding
becomes more obvious. It is worth noting that the winding insulation may be impaired
due to several reasons, some of them are mentioned as follbligH temperature of
winding or core of stator; -2Lamination slack, slot wedge and connections; 3
Disappearance of the end pins of the windingQ#4, humidity and dirty pollution; 5
Short circuit and starting the pressure;Bbectrical load discharge;- 1.eaking in the
cooling system. In this paper, we try to model some electric faults in stator winding.
Then we will model Inteturn stator winding fault, Inteturn stator between two phases
(two windings) of stator and lamination winding fault (operting circuit) of one of the
stator phases.

Spead

Torque

dq=>abc inverter Gainl

va

Va—#va*
teta val

v

Speed_ref(rpm) regulators Id_Iq
-C- » Speed_refl Vb—»vb* p

Speed_mes

£ > = ‘- o
id mes il = Ve|—»ivex VP2

iq mes

AAA——#pm

P ve2

Mux

PMSM

A

WM

1
|Universal Bridge

4

DC Voltage Source
2

Figure 5. Block diagram of the closed loop drive system for PMSM simulated motor under healthy
condition (hormal) in MATLAB/SIMULINK  software.

4.1.2 Designing PMSM under Interturn stator winding fault

As noted aboe, this type of fault is the most common fault that may occur in an
electric machine, especially the PMSM. This type of fault can be shown by a short
circuit resistance in the simplest casd-agire6 (a). However, when such a fault occurs
in a PMSM, issa is more complex than a simple model Begire6 (b)).
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b
Mh.c
(@) A simplemodelof Inter-turn stator (b) Circuit model of PMSM under inter turn fault ir
winding fault winding of phaséiad

Figure 6. Equivalent Circuit of PMSM under intefturn fault consideringmutual inductance between
healthy and damaged parts in faulted phase

Mutual induction between stator windings is identical in the normal mode, and
inductance and resistance modeled in the winding are similanawedhe same values

for other windings. Buwhen an Inteturn stator winding fault (turn to turn) occurs in
stator winding, its resistance and inductance vary and subsequently passing flux and
current in that winding vary. However since the turn to turn fault in incipient steps is not
considerecas complete Inteturn stator winding fault and also presence of carbon and
other materials results resistance in defective parts, defective winding is divided to two
parts: healthy and damaged ones, every part has mutual induction with other phases
separtely, in the other hand, between these two parts may be mutual induction; this
issue is considered in simulation of winding faukigure 6 shows a circuit model of
PMSM under the condition of intéurn stator winding fault in phase a of stator
winding, that all above mentioned considerat@ne considered in it.

In fact, if we assume thatiNe the number of turns (rings) of winding with Intarn

stator winding fault, then percentage of winding faul) {X calculated by Eq.(15).

N, =N- N, 4
Nf

X -

"N (15

Where N is the total number of turns (rings) in the winding and it is the same in all
phases. Nis the number of healthy turns of defective winding. . In the other hand, we
know that resistance and inductance of a winding relates to the number of its turns:
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SRaN Y R= -
A

— = === (D

2 2
oy
m m (16)

Nomenclaturédi s t he c¢cross section of the winding,
| is the length of the winding and-Rs resistance of magnetic current. According to the

above equation, the hees of resistance, inductance and mutual inductance for a
defective phase are calculated by Egs. (17) to (24). It follows that the relationship

bet weneni ndi cates healthy paati nodi cdaetfeesc td ame:

part of defective windingra and La are winding resistance and winding inductance,
respectively.

N

r, :Wfra X, .r -
o=t X .
N
La; =Efg —Si X2 N XF.L,
R, (19
(N - N, )
L"’: = En; (N;\I'z\'f)z @ X;) LY @=X,¥.L
R, (20)

If the mutual induction between two windings is calculated by the Eq. (21), then we
have the Eqq22) and (23):

M :—NaNb _—.N_2
Rm Rm (2]_)

R, R, R @2
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M

N, N - - 2
b= ; o (1- X, )NN (@ -X, )N =X, .M
m Rm Rm (23)

T . . .
In above equation$ and' are resistance of defective winding for the damaged and

normal parts of phase a respectivell')?; andl"Slh defective winding inductance of the
damaged and normal parts of phase a respectively.tMeismutual induction between

two healthy windings, 2 *is mutual induction between the damaged part of winging

and a total b phase of winding, al\r/lldrvb iIs mutual induction between healthy part of
phase a of winding andtad winding of the phase b. As mentioned before, the change

of flux in healthy and burned portions of the winding of a phase can result mutual
induction, between them phase a between them, considering this change and resulted
induction increases the accayeaof simulation, and it is calculated by Eq. (24).

N_ N - 2
aa - & & ixf . N][(l Xf)N] Xf(l )(_f )N_ sz(l )(f )_ I?
R, R, R, (24
N2
It is worth noting thaf2m here 1 s i nduaodt abnucte nooft pnhuatsuea | A i |

between two windings. Writing KVL in three turns of circuithigure 6, the windings
voltages are:

di di di di
— : & b a
VTR e g Mewge Mg Mg
di di di di
+M, , —— 1 X rH., M+ .—2 M +—¢ L —&
wa gp KR T MLy Bedt  *odt (o
: di di di di
V, = Hi B2 M. — M+ —2 +—C
b eb b'b b dt b a dt -Eﬁ dt bhc dt (26)
: di di di di
Vc:ec i, Ii_c_c M'}-C.a_af M-(}:-ﬁ_ah M ¢ —
d dt dt dt 27)
In the above equatior'ylsah'af “Ma s ,Mb'af - Maf'b, Moa, = Mah.b,Mc,ah =M, ,
Mea =M, “and Mcp =My . Considering these relationships, model of PMSM is

simulated under fault winding conditions using Eqgs. (17) to (24) and (25) to (27) in
SIMPOWER system of MATLAB software. Then, block of the PMSM machine

(motor) simulation uder fault conditions is achieved by placing the defective model

instant of the normal model Figure5.

4.2 Results and discussion
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Since both fault detection and fault amount be considered, obtained results for each
examination fall in two parts. Also, in @&r to compare with the results of proposed
method, results of other methods are presented. Methods based on neural network, such
as Feedrorward Back Propagation Neural Network, Cascade Back Propagation Neural
Network and Radial Basis Neural Network, ased in order to show the ability of the
minimum distance classifier {IN) [20] to detect faults. Remarkably, the best structure
for the networks is considered by trial and error training. MSE value is used as a
criterion of training performance for allethods based on neural network. Also three
hidden layers with (82-18) neurons are used to design and train FFBPNN and
CFBPNN neural networks. According to conducted experiments mentioned number of
layers and neurons have been presented the best rasudidclition, according to
analysis the best recognition rate on training data obtained by activity functamsaf
in middle (hidden) and activity function dfurelin in output layer. Furthermore, as
mentioned a method based on neural network traigachproved gravitational search
algorithm is used to determine the percent fault, also other algorithms based on swarm
intelligence such as basRarticle Swarm OptimizatiofPSO) and basigravitational
search algorithm(GSA) are used to compare the résuand the results obtained from
FeedForward Back Propagation Neural Network, Cascade Back Propagation Neural
Network and Radial Basis Neural Network are presented in order to prove the ability of
this training method.

It should be noted that the selecting the appropriate models for the study as well as the
designing the intelligent and efficient system is important. Extraction of appropriate
patterns and signals from the motor under different operating conditionscadepthe

useful information for designer. Therefore, as it can be seéigure 7, the per unit
values of thregohase currents is used to detect the faults and also, per unit magnitude of
the negative alternating currents [21] is used as a model torsie¢ethe amount of the

fault.
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Figure 7. total performances of proposed intelligent protection system

In following, some situations will be discussed, as instants, to test the proposed system.
Although there are more possible cases of evaluation and testing, the two conditions are
satisfied: the condition that its fault percentage is less than 10% amhehhat its
percentage fault is high for example more than 80%. Table (1) shows the details of the
studied PMSM and Table (2) shows information of case studies. It is necessary to
mention that the Inteturn resistance for simulation of PMSM equals 0.0&e under
Inter-turn stator winding fault condition, and different amount faults in different phases
are extracted, in addition, Inturn resistance in the range of 0.01 to 7 ohms is used to
extract the data from simulated PMSM under httgn stator wnding fault condition
between two windings.
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Table 1. Studied PMSM parameters

Parameters Values

Source voltage 560 V

Inductance of each healthy winding (L) 1.182 (mH)

Mutual Inductance between two healthy winding (M) 0.136 (mH)
Resistance of each healthy winding (r) 0.016 (YY)
Moment of inertia (J) 0.1 (kg.m2)
Friction factor (f) 0.01

Rated speed 2500 (rpm)

Table 2. Case study problems for evaluating designed system

Case study condition
First condition 9 percent inter-turn stator winding fault in phase a
Second condition 83 percent inter-turn stator winding fault in phase c

4.2.1 The first condition (nter-turn stator winding faultin phase a with amount of 9%)

Proposed methods must have optimal performance in all fault conditions. An
intelligent system should identify the fault type and its state in the least possible time in
all tested cases. The first condition is one of the primary cases oftuntestator
winding fault; this kind of fault, in actual condition, can be identified hardly. As it can
be seen irrigure8 (a) and (b) there is not a significant change in motor speed and RMS
per unit values of the thrgehase stator currents. Magnitude of negatigquence
components of threphase currents is used in order to determine the fault amount of
Inter-turn stator winding fault. Therefordigure 8 (c) shows per unit magnitude of
negative sequence components of thplkase stator currents under these camut
Figure9 shows the performance of the proposed method in such circumstances to detect
inter-turn fault. For the studied case, intelligent systems must identify "2" situation.
Figures10 shows performance of designed intelligent system containeddragural
networks to determine the fault amount in comparison with standard neural networks
under mentioned fault conditions.
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Figure 8. PMSM under 9 percent of Inteturn stator winding fault in phase a and in the time of 0.2
sec. (a)ynotor speed, (b) RMS values of Penit currents of three phases, a, b, and c, in the stator, (c)
Magnitude of per unit value of negative sequence components of tipfegse currents

As it can be seen iRigures9 (a) although the amount of fault is low and we have a
light fault here the proposed method detsdhter-turn fault and faulty phase less than
half duty cycle about 10 millisecond and then follow amount of happened fault about a
duty cycle. This delaycan be caused by our sampling method which monitors a
waveform each 10 millisecond. According to the performance of other methods

be impied that none of the traditional ANN topologies can follow fault condition. In
addition, from obtained resulthe best performance to predict amount of fault is for
ANN trained by IGSA. Although FFBPNN has the same performance, it will be
illustrated that FFBPNN shows good performance only for light faults while it presents
bad performance in heavy interrn faudts (seeFigure10 from (a) to (f)).
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Figure 9. Performance of minimum distance classifier in comparison with other AliAsed methods
in detection of 9 percent dhter-turn stator winding fault in phase a

4.2.2 The second condition (Inteturn stator winding fault in phase ¢ with fault amount 83%)

As it is difficult to determine the fault amount in low fault rates (such as first
condition), it also seems very difficult to determine the fault amount in high fault rates,
because motor performance in low percentages fault is similar to normal modiee and
changes of motor parameters are minimal in high percentages fault, especially more
than approximately 70% and 80%. So it would be a negative impact on system
performance. Adrigures1l (a) and (b) show, this fault amount may create highly
significant changes on the waveform of thyplkase currents and their RMS per unit

values.
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Figure 10. Performance of designed intelligent system based on trained feed fomeardl network
(FFNN) using IGSA to follow 9 percentintet ur n st at or winding fault in ph:

with GSA and PSO trained FFNN and other ANidased methods.

The Figure 11 (c) shows per unit magnitude of negative sequence components of
threephase stator currents under fault amount 83% in ¢ phase. Noted that intelligent
faul t detection systems must register 40
Figuresl12 (ad) show performance of used method under these conditions. In this case
that Interturn stator winding fault is very severe, as showkigure 13, the proposed
method works well in this situation. On the other hand, apart from inability of RBF and
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